This paper presents a brief survey of studies conducted at the Laboratory of Applied and Environmental Microbiology of the University of Tuscia on the possible biotechnological valorisation of olive mill wastewater (OMW) using fungi. Besides being a serious environmental problem, OMW might be a possible resource owing to the presence of added value products (e.g. antioxidants) and of simple and complex sugars as a basis for fermentation processes. To this end the technical feasibility of various fungal fermentative processes either to obtain products of high added value or to improve its agronomic use has been assessed. With regard to the former aspect the following cases of study are described: production of enzymes, such as lipase by Candida cylindracea NRRL Y-17506, laccase and Mn-dependent peroxidase by Panus tigrinus CBS 577.79 and pectinases by Cryptococcus albidus var. albidus IMAT 4735, and exopolysaccharide production by Botryosphaeria rhodina DABAC-P82. As far as agronomic use of the waste is concerned, a process based on the acidogenic fungus Aspergillus niger NB2 and aimed at increasing the phosphorus content of OMW is also reported.
Black fungi reported as degraders of volatile aromatic compounds were isolated from hydrocarbon-polluted sites and indoor environments. Several of the species encountered are known opportunistic pathogens or are closely related to pathogenic species causing severe mycoses, among which are neurological infections in immunocompetent individuals. Given the scale of the problem of environmental pollution and the phylogenetic relation of aromate-degrading black fungi with pathogenic siblings, it is of great interest to select strains able to mineralize these substrates efficiently without any risk for public health. Fifty-six black strains were obtained from human-made environments rich in hydrocarbons (gasoline car tanks, washing machine soap dispensers) after enrichment with some phenolic intermediates of toluene and styrene fungal metabolism. Based on ITS sequencing identification, the majority of the obtained isolates were members of the genus Exophiala. Exophiala xenobiotica was found to be the dominant black yeast present in the car gasoline tanks. A higher biodiversity, with three Exophiala species, was found in soap dispensers of washing machines. Strains obtained were screened using a 2,6-dichlorophenol-indophenol (DCPIP) assay, optimized for black fungi, to assess their potential ability to degrade toluene. Seven out of twenty strains tested were able to use toluene as carbon source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.