Head pose estimation is an old problem that is recently receiving new attention because of possible applications in human-robot interaction, augmented reality and driving assistance. However, most of the existing work has been tested in controlled environments and is not robust enough for real-world applications. In order to handle these limitations we propose an approach based on Convolutional Neural Networks (CNNs) supplemented with the most recent techniques adopted from the deep learning community. We evaluate the performance of four architectures on recently released in-the-wild datasets. Moreover, we investigate the use of dropout and adaptive gradient methods giving a contribution to their ongoing validation. The results show that joining CNNs and adaptive gradient methods leads to the state-of-the-art in unconstrained head pose estimation.
Trust is a critical issue in human–robot interactions: as robotic systems gain complexity, it becomes crucial for them to be able to blend into our society by maximizing their acceptability and reliability. Various studies have examined how trust is attributed by people to robots, but fewer have investigated the opposite scenario, where a robot is the trustor and a human is the trustee. The ability for an agent to evaluate the trustworthiness of its sources of information is particularly useful in joint task situations where people and robots must collaborate to reach shared goals. We propose an artificial cognitive architecture based on the developmental robotics paradigm that can estimate the trustworthiness of its human interactors for the purpose of decision making. This is accomplished using Theory of Mind (ToM), the psychological ability to assign to others beliefs and intentions that can differ from one’s owns. Our work is focused on a humanoid robot cognitive architecture that integrates a probabilistic ToM and trust model supported by an episodic memory system. We tested our architecture on an established developmental psychological experiment, achieving the same results obtained by children, thus demonstrating a new method to enhance the quality of human and robot collaborations.
This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction’.
The autonomous landing of an Unmanned Aerial Vehicle (UAV) on a marker is one of the most challenging problems in robotics. Many solutions have been proposed, with the best results achieved via customized geometric features and external sensors. This paper discusses for the first time the use of deep reinforcement learning as an end-to-end learning paradigm to find a policy for UAVs autonomous landing. Our method is based on a divide-and-conquer paradigm that splits a task into sequential sub-tasks, each one assigned to a Deep Q-Network (DQN), hence the name Sequential Deep Q-Network (SDQN). Each DQN in an SDQN is activated by an internal trigger, and it represents a component of a high-level control policy, which can navigate the UAV towards the marker. Different technical solutions have been implemented, for example combining vanilla and double DQNs, and the introduction of a partitioned buffer replay to address the problem of sample efficiency. One of the main contributions of this work consists in showing how an SDQN trained in a simulator via domain randomization, can effectively generalize to real-world scenarios of increasing complexity. The performance of SDQNs is comparable with a state-of-the-art algorithm and human pilots while being quantitatively better in noisy conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.