The microclimatic monitoring of the historic church of Mogiła Abbey (Kraków, Poland) was carried out to study the impact of the environmental parameters on the organic and hygroscopic artworks. Specific indexes were proposed to objectively assess the quality of time series of temperature (T), relative humidity (RH), and carbon dioxide (CO) before applying the exploratory data analysis. The series were used to define the historic environmental conditions as stated in the European Standard EN 15757:2010 and with the use of the climate evaluation chart (CEC). It was found that the percentage of time in which T and RH values are within the allowable limits of the ASHRAE (2011) Class B is more than 85 %. This means that, for about 15 % of the time, there is a high risk of mechanical damage to highly vulnerable objects mainly due to the RH variability. The environment at the chancel resulted moister than that at the cornice, and the fungal growth is possible. In addition, the time-weighted preservation index (TWPI) is computed to evaluate the life expectancy of the objects, taking into account the environmental conditions of the site under study. The method of analogues, developed to predict the evolution of a system given observations of the past and without the knowledge of any equation among variables, was proposed and applied to the time series of temperature, relative humidity, and carbon dioxide with a 1-h sampling time to avoid the influence of the autocorrelation.
In today's connected world, users migrate within a complex set of networks, including, but not limited to, 3G and 4G (LTE) services provided by mobile operators, Wi-Fi hotspots in private and public places, as well as wireless and/or wired LAN access in business and home environments. Following the widely expanding Bring Your Own Device (BYOD) approach, many public and educational institutions have begun to encourage customers and students to use their own devices at all times. While this may be cost-effective in terms of decreased investments in hardware and consequently lower maintenance fees on a long-term basis, it may also involve some security risks. In particular, many users are often connected to more than one network and/or communication service provider at the same time, for example to a 3G/4G mobile network and to a Wi-Fi. In a BYOD setting, an infected device or a rogue one can turn into an unwanted gateway, causing a security breach by leaking information across networks. Aiming at investigating in greater detail the implications of BYOD on network security in private and business settings we are building a framework for experiments with mobile routers both in home and business networks. This is a continuation of our earlier work on communications and services with enhanced security for network appliances.
The object of this study was the recognition of Regions Of Interest(ROIs) in a time series of digital images of two specific laboratory experiments. It concerns the identification of objects in a tissue surface by high-resolution and high-speed ad-hoc systems for morphological dynamic image analysis. The protocols and the algorithms implemented are developed to retrieve biomechanical properties of two different in vitro systems; the solid filament X-MET (eX-vivo Muscle Engineered Tissue) to measure its reaction to a different frequency stimulation, and a planar system of co-culture of skeletal and cardiac muscle cells, where myotubes and cardiomyocytes coexist, to discriminate the interaction between different cell's type, of its spontaneous pulse. The results of the stimulated X-MET from solid culture system are frequency dependent points of the macroscopic muscular strength and its contractile response. The results for the co-culture planar board measure the correlation of the pulsed movements of the different parts of the tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.