At the moment of writing, the future evolution of the COVID-19 epidemic is unclear. Predictions of the further course of the epidemic are decisive to deploy targeted disease control measures. We consider a network-based model to describe the COVID-19 epidemic in the Hubei province. The network is composed of the cities in Hubei and their interactions (e.g., traffic flow). However, the precise interactions between cities is unknown and must be inferred from observing the epidemic. We propose the Network-Inference-Based Prediction Algorithm (NIPA) to forecast the future prevalence of the COVID-19 epidemic in every city. Our results indicate that NIPA is beneficial for an accurate forecast of the epidemic outbreak.
Researchers from various scientific disciplines have attempted to forecast the spread of the Coronavirus Disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the diverse set of algorithms that we evaluated, original NIPA performs best on forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.
In the classical susceptible-infected-susceptible (SIS) model, a disease or infection spreads over a given, mostly fixed graph. However, in many real complex networks, the topology of the underlying graph can change due to the influence of the dynamical process. In this paper, besides the spreading process, the network adaptively changes its topology based on the states of the nodes in the network. An entire class of link-breaking and link-creation mechanisms, which we name Generalized Adaptive SIS (G-ASIS), is presented and analyzed. For each instance of G-ASIS using the complete graph as initial network, the relation between the epidemic threshold and the effective link-breaking rate is determined to be linear, constant, or unknown. Additionally, we show that there exist link-breaking and link-creation mechanisms for which the metastable state does not exist. We confirm our theoretical results with several numerical simulations.
During the outbreak of a virus, perhaps the greatest concern is the future evolution of the epidemic: How many people will be infected and which regions will be affected the most? The accurate prediction of an epidemic enables targeted disease countermeasures (e.g., allocating medical staff and quarantining). But when can we trust the prediction of an epidemic to be accurate? In this work we consider susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks with time-invariant spreading parameters. (For time-varying spreading parameters, our results correspond to an optimistic scenario for the predictability of epidemics.) Our contribution is twofold. First, accurate long-term predictions of epidemics are possible only after the peak rate of new infections. Hence, before the peak, only short-term predictions are reliable. Second, we define an exponential growth metric, which quantifies the predictability of an epidemic. In particular, even without knowing the future evolution of the epidemic, the growth metric allows us to compare the predictability of an epidemic at different points in time. Our results are an important step towards understanding when and why epidemics can be predicted reliably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.