At the moment of writing, the future evolution of the COVID-19 epidemic is unclear. Predictions of the further course of the epidemic are decisive to deploy targeted disease control measures. We consider a network-based model to describe the COVID-19 epidemic in the Hubei province. The network is composed of the cities in Hubei and their interactions (e.g., traffic flow). However, the precise interactions between cities is unknown and must be inferred from observing the epidemic. We propose the Network-Inference-Based Prediction Algorithm (NIPA) to forecast the future prevalence of the COVID-19 epidemic in every city. Our results indicate that NIPA is beneficial for an accurate forecast of the epidemic outbreak.
Predicting the viral dynamics of an epidemic process requires the knowledge of the underlying contact network. However, the network is not known for most applications and has to be inferred from observing the viral state evolution instead. We propose a polynomial-time network reconstruction algorithm for the discrete-time NIMFA model based on a basis pursuit formulation. Given only few initial viral state observations, the network reconstruction method allows for an accurate prediction of the further viral state evolution of every node provided that the network is sufficiently sparse.Paré et al. [7] analysed the equilibria of the discrete-time NIMFA model (3) and validated the dynamics of real-world epidemics, when the nodes of the network corresponds to groups of individuals, namely either households or counties.Recently, estimation methods were proposed [9, 10, 11] to reconstruct the network from viral state observations of susceptible-infected-susceptible (SIS) epidemic models . The maximum-likelihood SIS network reconstruction problem is NP-hard [12], and the number of required viral state observations n seems [9] to grow (almost) exponentially with respect to the network size N . For the NIMFA model (3), Paré et al. [7] proposed a method to estimate the spreading parameters β T and δ T under the assumption that the adjacency matrix A is known exactly.The network reconstruction method in this work is motivated by two factors. First, the tremendous number of required viral state observations and the NP-hardness seem to render the exact SIS network reconstruction hardly viable, and modelling the viral dynamics by the NIMFA equations (1) may allow for a feasible network reconstruction problem. Second, we generalise the spreading parameter estimation method [7] by also estimating the adjacency matrix A of the underlying contact network.
Researchers from various scientific disciplines have attempted to forecast the spread of the Coronavirus Disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the diverse set of algorithms that we evaluated, original NIPA performs best on forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.
Background Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported from a standardised source over the next one to four weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. Results Over 52 weeks we collected and combined up to 28 forecast models for 32 countries. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 84% of participating models’ forecasts of incident cases (with a total N=862), and 92% of participating models’ forecasts of deaths (N=746). Across a one to four week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over four weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than two weeks. Code and data availability All data and code are publicly available on Github: covid19-forecast-hub-europe/euro-hub-ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.