MEG offers dynamic and spectral resolution for resting-state connectivity which is unavailable in fMRI. However, there are a wide range of available network estimation methods for MEG, and little in the way of existing guidance on which ones to employ. In this technical note, we investigate the extent to which many popular measures of stationary connectivity are suitable for use in resting-state MEG, localising magnetic sources with a scalar beamformer. We use as empirical criteria that network measures for individual subjects should be repeatable, and that group-level connectivity estimation shows good reproducibility. Using publically-available data from the Human Connectome Project, we test the reliability of 12 network estimation techniques against these criteria. We find that the impact of magnetic field spread or spatial leakage artefact is profound, creates a major confound for many connectivity measures, and can artificially inflate measures of consistency. Among those robust to this effect, we find poor test-retest reliability in phase- or coherence-based metrics such as the phase lag index or the imaginary part of coherency. The most consistent methods for stationary connectivity estimation over all of our tests are simple amplitude envelope correlation and partial correlation measures.
BackgroundRetinal optical coherence tomography (OCT) is an imaging biomarker for neurodegeneration in multiple sclerosis (MS). In order to become validated as an outcome measure in multicenter studies, reliable quality control (QC) criteria with high inter-rater agreement are required.Methods/Principal FindingsA prospective multicentre study on developing consensus QC criteria for retinal OCT in MS: (1) a literature review on OCT QC criteria; (2) application of these QC criteria to a training set of 101 retinal OCT scans from patients with MS; (3) kappa statistics for inter-rater agreement; (4) identification reasons for inter-rater disagreement; (5) development of new consensus QC criteria; (6) testing of the new QC criteria on the training set and (7) prospective validation on a new set of 159 OCT scans from patients with MS. The inter-rater agreement for acceptable scans among OCT readers (n = 3) was moderate (kappa 0·45) based on the non-validated QC criteria which were entirely based on the ophthalmological literature. A new set of QC criteria was developed based on recognition of: (O) obvious problems, (S) poor signal strength, (C) centration of scan, (A) algorithm failure, (R) retinal pathology other than MS related, (I) illumination and (B) beam placement. Adhering to these OSCAR-IB QC criteria increased the inter-rater agreement to kappa from moderate to substantial (0.61 training set and 0.61 prospective validation).ConclusionsThis study presents the first validated consensus QC criteria for retinal OCT reading in MS. The high inter-rater agreement suggests the OSCAR-IB QC criteria to be considered in the context of multicentre studies and trials in MS.
In recent years there has been a shift in focus from the study of local, mostly task-related activation to the exploration of the organization and functioning of large-scale structural and functional complex brain networks. Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical tools and models which allow a systematic interpretation of multivariate data obtained from structural and functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple, unbiased method to represent the essential features of brain networks, and to compare these across different conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this problem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects all nodes and maximizes a property of interest such as synchronization between brain areas. We explain how the global and local properties of an MST can be characterized. We then review early and more recent applications of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and Parkinson's disease, and show how MST characterization performs compared to more conventional graph analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a space of all possible tree configurations and discuss how this may simplify the construction of simple generative models of normal and abnormal brain network organization.
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-toposterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequencydependent reentry loops that are dominated by flow from parietooccipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.information flow | phase transfer entropy | resting-state networks | magnetoencephalography | atlas-based beamforming T he brain is an extremely complex system (1-3) containing, at the macroscopic scale, interconnected functional units (4) with more-or-less specific information processing capabilities (5). However, cognitive functions require the coordinated activity of these spatially separated units, where the oscillatory nature of neuronal activity may provide a possible mechanism (6-9). A complete description of these interactions, in terms of both strength and directionality, is therefore necessary for the understanding of both normal and abnormal brain functioning.Functional interactions may be inferred from statistical dependencies between the time series of neuronal activity at different sites, so-called functional connectivity (10). Indeed, interactions in large-scale functional networks have been observed using Electroencephalography, Magnetoencephalography (EEG/MEG) and functional Magnetic Resonance Imaging (fMRI) (e.g., refs. 11-14). However, as yet, little is known about the directionality of these interactions in large-scale functional networks during the resting state. Estimating directionality from fMRI is challenging due to its limited temporal resolution and indirect relation to neuronal activity (15, 16). In contrast, EEG studies in healthy controls have revealed a front-to-back pattern of directed connectivity, particularly in the alpha band (17-22), consistent with modeling studies that have shown that such patterns may arise due to differences in the number of anatomical connections (the degree) of anterior and posterior regions (22, 23). However, modeled patterns of information flow depend on the a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.