Temperature warming and the increased frequency of climatic anomalies are expected to trigger bark beetle outbreaks with potential severe consequences on forest ecosystems. We characterized the combined effects of climatic factors and densitydependent feedbacks on forest damage caused by Ips typographus (L.), one of the most destructive pests of European spruce forests, and tested whether climate modified the interannual variation in the altitudinal outbreak range of the species. We analyzed a 16year time-series from the European Alps of timber loss in Picea abies Karsten forests due to I. typographus attacks and used a discrete population model and an information theoretic approach to compare multiple competing hypotheses. The occurrence of dry summers combined with warm temperatures appeared as the main abiotic triggers of severity of outbreaks. We also found an endogenous negative feedback with a 2-year lag suggesting a potential important role of natural enemies. Forest damage per hectare averaged 7-fold higher where spruce was planted in sites warmer than those within its historical climatic range. Dry summers, but not temperature, was related to upward shifts in the altitudinal outbreak range. Considering the potential increased susceptibility of spruce forests to insect outbreaks due to climate change, there is growing value in mitigating these effects through sustainable forest management, which includes avoiding the promotion of spruce outside its historical climatic range.
Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE’s web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We find that there are 18 Scolytinae and one Platypodinae species apparently established in Europe, from 14 different genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. We also point out the possibility that the Asian larch bark beetle Ips subelongatus is established in European Russia. We show that there has been a marked acceleration in the rate of new introductions to Europe, as is also happening in North America: seven alien species were first recorded in the last decade.We present information on the biology, origins, and distributions of the alien species. All but four are polyphagous, and 11 are inbreeders: two traits which increase invasiveness. Eleven species are native to Asia, six to the Americas, and one is from the Canary Islands. The Mediterranean is especially favorable for invasives, hosting a large proportion of the aliens (9/19). Italy, France and Spain have the largest numbers of alien species (14, 10 and 7, respectively). We point out that the low numbers for at least some countries is likely due to under-reporting.Finally, we discuss the difficulties associated with identifying newly invasive species. Lack of good illustrations and keys hinder identification, particularly for species coming from Asia and Oceania.
Summer drought associated with high temperatures recorded in the last few years has given rise to outbreaks of bark beetles developing in weakened host trees. The aim of this study was to investigate the possible weather effect on the biology of and damage caused by Ips typographus L. in the southeastern Alps. The study was carried out recording temperature (1962-2007), precipitation (1922-2007), and the damage caused by I. typographus (1993-2007). In addition, data from pheromone-baited traps (1996-2005) provided information on the main periods of flight activity of I. typographus. From 1922 to 2007, precipitation during March-July has decreased approximately 200 mm (-22%), whereas since 1962-2007, mean temperatures during March-July increased approximately 2 degrees C (+13%). Damage caused by I. typographus was inversely correlated with March-July precipitation from the previous year but not correlated with temperature. Increases in spring temperature did not affect the development timing of the first generation, but only changed its onset. Earlier swarming of both overwintering beetles and first-generation offspring ( approximately 20 d sooner over 10 yr), and the early start of the second generation permitted more complete development of the second brood. Voltinism in this species is discussed in relation to thermal and photoperiodic thresholds, indicating that the occurrence of a third generation is limited by the summer photoperiod rather than by temperature. In conclusion, results suggest that spring drought increases damage caused by I. typographus in the following year, whereas warmer spring affects insect phenology.
Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.