Recent works highlighted the significant potential of lung ultrasound (LUS) imaging in the management of subjects affected by COVID-19. In general, the development of objective, fast, and accurate automatic methods for LUS data evaluation is still at an early stage. This is particularly true for COVID-19 diagnostic. In this article, we propose an automatic and unsupervised method for the detection and localization of the pleural line in LUS data based on the hidden Markov model and Viterbi Algorithm. The pleural line localization step is followed by a supervised classification procedure based on the support vector machine (SVM). The classifier evaluates the healthiness level of a patient and, if present, the severity of the pathology, i.e., the score value for each image of a given LUS acquisition. The experiments performed on a variety of LUS data acquired in Italian hospitals with both linear and convex probes highlight the effectiveness of the proposed method. The average overall accuracy in detecting the pleura is 84% and 94% for convex and linear probes, respectively. The accuracy of the SVM classification in correctly evaluating the severity of COVID-19 related pleural line alterations is about 88% and 94% for convex and linear probes, respectively. The results as well as the visualization of the detected pleural line and the predicted score chart, provide a significant support to medical staff for further evaluating the patient condition.
The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images. One widely used approach to change detection in multispectral images is based on Change Vector Analysis (CVA). Here, the distribution of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice mixture density. However, given the complexity of this model, in applications a Gaussian-mixture approximation is often considered, which may affect the change detection results. In this paper we present a novel technique for parameter estimation of the Rayleigh-Rice density that is based on a specific definition of the Expectation-Maximization (EM) algorithm. The proposed technique, which is characterized by good theoretical properties, iteratively updates the parameters and does not depend on specific optimization routines. Several numerical experiments on synthetic data demonstrate the effectiveness of the method which is general and can be applied to any image processing problem involving the Rayleigh-Rice mixture density. In the change detection context, the Rayleigh-Rice model (which is theoretically derived) outperforms other empirical models. Experiments on real multitemporal and multispectral remote sensing images confirm the validity of the model by returning significantly higher change detection accuracies than those obtained by using state-of-the-art approaches.
In this paper we address the numerical minimization of a variational approximation of the Blake-Zisserman functional given by Ambrosio, Faina and March. Our approach exploits a compact matricial formulation of the objective functional and its decomposition into quadratic sparse convex sub-problems. This structure is well suited for using a block-coordinate descent method that cyclically determines a descent direction with respect to a block of variables by few iterations of a preconditioned conjugate gradient algorithm. We prove that the computed search directions are gradient related and, with convenient step-sizes, we obtain that any limit point of the generated sequence is a stationary point of the objective functional. An extensive experimentation on different datasets including real and synthetic images and digital surface models, enables us to conclude that: (1) the numerical method has satisfying performance in terms of accuracy and computational time; (2) a minimizer of the proposed discrete functional preserves the expected good geometrical properties of the Blake–Zisserman functional, i. e., it is able to detect first and second order edge-boundaries in images and (3) the method allows the segmentation of large images
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.