Bemisia tabaci is a cryptic species complex that requires the use of molecular tools for identification. The most widely used approach for achieving this is the partial sequencing of the mitochondrial DNA cytochrome oxidase I gene (COI). A more reliable single nucleotide polymorphism (SNP)-based genotyping approach, using Nextera restriction-site-associated DNA (NextRAD) sequencing, has demonstrated the existence of six major haplogroups of B. tabaci on cassava in Africa. However, NextRAD sequencing is costly and time-consuming. We, therefore, developed a cheaper and more rapid diagnostic using the Kompetitive Allele-Specific PCR (KASP) approach. Seven sets of primers were designed to distinguish the six B. tabaci haplogroups based on the NextRAD data. Out of the 152 whitefly samples that were tested using these primer sets, 151 (99.3%) produced genotyping results consistent with NextRAD. The KASP assay was designed using NextRAD data on whiteflies from cassava in 18 countries across sub-Saharan Africa. This assay can, therefore, be routinely used to rapidly diagnose cassava B. tabaci by laboratories that are researching or monitoring this pest in Africa. This is the first study to develop an SNP-based assay to distinguish B. tabaci whiteflies on cassava in Africa, and the first application of the KASP technique for insect identification.
A comprehensive assessment of cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) was carried out in Comoros where cassava yield (5.7 t/ha) is significantly below the African average (8.6 t/ha) largely due to virus diseases. Observations from 66 sites across the Comoros Islands of Mwali, Ngazidja, and Ndzwani revealed that 83.3% of cassava fields had foliar symptoms of CBSD compared with 95.5% for CMD. Molecular diagnostics confirmed the presence of both cassava brown streak ipomoviruses (CBSIs) and cassava mosaic begomoviruses (CMBs). Although real-time RT-PCR only detected the presence of one CBSI species (Cassava brown streak virus, CBSV) the second species (Ugandan cassava brown streak virus, UCBSV) was identified using next-generation high-throughput sequencing. Both PCR and HTS detected the presence of East African cassava mosaic virus (EACMV). African cassava mosaic virus was not detected in any of the samples. Four whitefly species were identified from a sample of 131 specimens: Bemisia tabaci, B. afer, Aleurodicus dispersus, and Paraleyrodes bondari. Cassava B. tabaci comprised two mitotypes: SSA1-SG2 (89%) and SSA1-SG3 (11%). KASP SNP genotyping categorized 82% of cassava B. tabaci as haplogroup SSA-ESA. This knowledge will provide an important base for developing and deploying effective management strategies for cassava viruses and their vectors.
The control of the whitefly Bemisia tabaci relies heavily on the use of synthetic insecticides. There is a need to develop alternative control strategies due to concerns about impact of these insecticides on the environmental and human health, and the threat of insecticide resistance. Botanical oil extracts could potentially be used for the management of whiteflies and other pests. The study reported here therefore aimed to evaluate the efficacy of selected botanical oils against the cassava whitefly, B. tabaci and test their effect on its feeding behaviour. Patchouli oil treatment was the most effective at repelling whiteflies in no choice and choice experiments with up to 85% of whiteflies being repelled. Oviposition was also reduced 50–89% in patchouli. Neem was found to be effective at reducing oviposition, nymph and adult emergence by 50%, 70% and 80%, respectively, in a screenhouse no choice experiment. Patchouli significantly reduced the phloem ingestion phase (E2) by 40% and potential drops (pd) by 46% compared to control plants. Neem significantly increased the non‐probing duration by 48% and reduced pd by 50% compared to the control. Patchouli and neem were found to be the most effective among the selected botanical oils. These two oils should be further evaluated for efficacy under field conditions to determine suitability for recommendation as biopesticides against the cassava B. tabaci whitefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.