-The involvement of oxidative stress has been suggested as a mechanism for toxicity caused by methylmercury (MeHg). One of the major critical sites for oxidative stress is the mitochondria. In this research, to clarify the target site in mitochondria affected by MeHg, the individual activities of the mitochondrial electron transport chain (ETC) (I IV) were examined in the liver, cerebrum and cerebellum of MeHg-intoxicated rats. In addition, to elucidate the mechanism underlying MeHg toxicity, cytochrome c release, caspase 3 activity and histological study were examined in the cerebrum and cerebellum. The cerebellum was found to be an exclusive tissue in which significant MeHg-induced alterations were observed. The complex II activity in the cerebellum mitochondria significantly decreased after MeHg exposure. Cytochrome c release from mitochondria increased only in the cerebellum by MeHg exposure. However, no significant alterations in caspase 3 activity or histological structure were found in brain tissues. These results suggest that MeHg acts on the constituents of complex II in the cerebellum, and induces mitochondrial dysfunction, leading to a release of cytochrome c from mitochondria. These events were considered to occur at the early stage of MeHg intoxication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.