We established a novel cell-free protein synthesis system derived from Trichoplusia ni (HighFive) insect cells by a simple extraction method. Luciferase and beta-galactosidase were synthesized in this system with active forms. We analyzed and optimized (1) the preparation method of the insect cell extract, (2) the concentration of the reaction components, and (3) the 5'-untranslated region (5'-UTR) of mRNA. The extract was prepared by freeze-thawing insect cells suspended in the extraction buffer. This preparation method was a simple and superior method compared with the conventional method using a Dounce homogenizer. Furthermore, protein synthesis efficiency was improved by the addition of 20% (v/v) glycerol to the extraction buffer. Concentrations of the reaction components were optimized to increase protein synthesis efficiency. Moreover, mRNAs containing 5'-UTRs derived from baculovirus polyhedrin genes showed high protein synthesis activity. Especially, the leader composition of the Ectropis obliqua nucleopolyhedrovirus polyhedrin gene showed the highest enhancement activity among the six 5'-UTRs tested. As a result, in a batch reaction approximately 71 microg of luciferase was synthesized per milliliter of reaction volume at 25 degrees C for 6 h. Moreover, this method for the establishment of a cell-free system was applied also to Spodoptera frugiperda 21 (Sf21) insect cells. After optimizing the concentrations of the reaction components and the 5'-UTR of mRNA, approximately 45 microg/mL of luciferase was synthesized in an Sf21 cell-free system at 25 degrees C for 3 h. These productivities were sufficient to perform gene expression analyses. Thus, these cell-free systems may be a useful tool for simple synthesis in post-genomic studies as a novel protein production method.
The entire genome of the unicellular cyanobacterium Synechococcus elongatus PCC 6301 (formerly Anacystis nidulans Berkeley strain 6301) was sequenced. The genome consisted of a circular chromosome 2,696,255 bp long. A total of 2,525 potential protein-coding genes, two sets of rRNA genes, 45 tRNA genes representing 42 tRNA species, and several genes for small stable RNAs were assigned to the chromosome by similarity searches and computer predictions. The translated products of 56% of the potential protein-coding genes showed sequence similarities to experimentally identified and predicted proteins of known function, and the products of 35% of the genes showed sequence similarities to the translated products of hypothetical genes. The remaining 9% of genes lacked significant similarities to genes for predicted proteins in the public DNA databases. Some 139 genes coding for photosynthesis-related components were identified. Thirty-seven genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly identical to those of a closely related strain Synechococcus elongatus PCC 7942, except for the presence of a 188.6 kb inversion. The sequences as well as the gene information shown in this paper are available in the Web database, CYORF (http://www.cyano.genome.jp/).
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2⌬ strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1⌬ cells especially at S phase. In contrast, the cds1⌬swi1⌬ mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.Salinity is a major problem affecting world overall agricultural production. Approximately 20% of the cultivated land worldwide is impaired by high salinity which causes ion imbalance and hyperosmotic stress in plants (1). Plants have evolved various strategies to cope with salinity, including the accumulation of low molecular weight organic compatible solutes (osmoprotectants) such as sugars, some amino acids, and quaternary ammonium compounds (2-4). Glycine betaine (N,N,N-trimethylglycine, hereafter betaine) is a major osmoprotectant to protect plants from high salinity (2-4). Most known biosynthetic pathways of betaine include a two-step oxidation of choline: choline 3 betaine aldehyde 3 betaine. The first step is catalyzed by choline monooxygenase (CMO) in plants (5), choline dehydrogenase (CDH) in animals and bacteria (6, 7), and choline oxidase in some bacteria (8, 9). The second step is catalyzed by betaine aldehyde dehydrogenase (BADH) in all organisms (6, 10, 11). Introducing the betaine synthetic pathway into betaine non-accumulating plants has been applied to improve salt tolerance of plants (8,(12)(13)(14)(15). However, the accumulation levels of betaine in the transformed plants are relatively low. Supplying betaine precursors such as choline, ethanolamine, and serine to the transformed plants enhance betaine accumulation. Thus, the availability of betaine precursors limits the betaine biosynthesis (15, 16 -18).Recently, we showed that a halotolerant cyanobacterium, Aphanothece halophytica (A. halophytica), synthesizes betaine from glycine by a three-step methylation, which is catalyzed by two N-methyltransferases (ApGSMT and ApDMT). ApGSMT is responsible for the two-step methylation reactions of ...
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow at NaCl concentrations up to 3.0 M and at pH values up to 11. The genome sequence revealed that the cyanobacterium Synechocystis sp. strain PCC 6803 contains five putative Na ؉ /H ؉ antiporters, two of which are homologous to NhaP of Pseudomonas aeruginosa and three of which are homologous to NapA of Enterococcus hirae. The physiological and functional properties of NapA-type antiporters are largely unknown. One of NapA-type antiporters in Synechocystis sp. strain PCC 6803 has been proposed to be essential for the survival of this organism. In this study, we examined the isolation and characterization of the homologous gene in Aphanothece halophytica. Two genes encoding polypeptides of the same size, designated Ap-napA1-1 and Ap-napA1-2, were isolated. ApNapA1-1 exhibited a higher level of homology to the Synechocystis ortholog (Syn-NapA1) than Ap-NapA1-2 exhibited. Ap-NapA1-1, Ap-NapA1-2, and Syn-NapA1 complemented the salt-sensitive phenotypes of an Escherichia coli mutant and exhibited strongly pH-dependent Na ؉ /H ؉ and Li ؉ /H ؉ exchange activities (the highest activities were at alkaline pH), although the activities of Ap-NapA1-2 were significantly lower than the activities of the other polypeptides. Only one these polypeptides, Ap-NapA1-2, complemented a K ؉ uptake-deficient E. coli mutant and exhibited K ؉ uptake activity. Mutagenesis experiments suggested the importance of Glu129, Asp225, and Asp226 in the putative transmembrane segment and Glu142 in the loop region for the activity. Overexpression of Ap-NapA1-1 in the freshwater cyanobacterium Synechococcus sp. strain PCC 7942 enhanced the salt tolerance of cells, especially at alkaline pH. These findings indicate that A. halophytica has two NapA1-type antiporters which exhibit different ion specificities and play an important role in salt tolerance at alkaline pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.