Pancreatic cancer has been becoming the second cause of cancer death in the western world, and its disease burden has increased. Neoadjuvant therapy is one of the current research hotspots in the field of pancreatic cancer, aiming to improve the surgical rate and prognosis of pancreatic cancer. Based on the latest evidence, this review discussed neoadjuvant therapy in pancreatic cancer from the following three aspects: patient selection, protocols selection of neoadjuvant therapy, and treatment response evaluation and resectability prediction. A big controversy existed on the indications of neoadjuvant treatment, but it was agreed that any patient who is likely to achieve R0 resection due to neoadjuvant therapy should be the targeted population. A variety of chemotherapy regimens were tried for neoadjuvant therapy in pancreatic cancer, and FOLFIRINOX and Nab-Paclitaxel plus Gemcitabine are two preferred regimens at present. It was challenging to evaluate treatment response and predict resectability after neoadjuvant therapy, although imaging by CT is widely used. Based on new findings of the remarkable performance of several chemotherapy regimens with or without radiotherapy, the neoadjuvant indications of pancreatic cancer have extended in recent years. However, it is still a challenge to assess the neoadjuvant treatment response and determine the timing of surgery.
Disulfiram (DSF) is a well-known drug for alcohol abuse. In recent decades, DSF has been demonstrated to exhibit anti-tumor activity; DSF chelated with copper shows enhanced anti-tumor effect. Our goal was to explore the effect of DSF/Cu complex on the growth and metastasis of gastric cancer (GC) in vitro and in vivo. DSF/Cu complex suppressed the proliferation, migration of MKN-45 and BGC-823 GC cells. Furthermore, DSF/Cu treatment reduced the tumor volume in GC mouse models with a tumor suppression rate of 48.24%. Additionally, DSF/Cu induced apoptosis in vitro in MKN-45 and BGC-823 GC cells in a dose- and time-dependent manner as well as in vivo in the xenograft tumor mouse model. Furthermore, DSF/Cu induced autophagy and autophagic flux in MKN-45 and BGC-823 cells, increased the expression of autophagy-related Beclin-1 and LC3 proteins in vivo. Additionally, DSF/Cu suppressed aerobic glycolysis and oxidative phosphorylation by reducing oxygen consumption rate and extracellular acidification rate, respectively, in MKN-45 and BGC-823 cells. Treatment with DSF/Cu induced oxidative stress and DNA damage response by elevating the reactive oxygen species levels; increasing the expression of P53, P21, and γ-H2AX proteins; and inhibiting Wnt/β-catenin signaling in vitro and in vivo. Thus, DSF/Cu suppressed the growth and metastasis of GC cells via modulating the stress response and Wnt/β-catenin signaling. Hence, DSF may be used as a potential therapeutic agent for the treatment of GC.
One of the most important and striking characteristics of hepatocellular carcinoma (HCC) with intrahepatic metastasis, is that it results in extremely poor prognosis. Animal models have become a fundamental and very useful in research for disease study. However, some limitation has arisen from these model systems. We have therefore established a model of HCC with intrahepatic metastasis and noticed some differential appearances in different HCC cell lines. Luciferase-transfected HCC cell lines MHCC97-H and PLC/PRF/5 were inoculated into SCID mice via spleen. Observation the intrahepatic metastasis by bioluminescence imaging in vivo and comparing of the differential formation of metastatic lesions between different HCC cell lines by incorporating physical anatomy was done. Animal models for HCC intrahepatic metastasis were well established. However, there were some clearly noticed differences between MHCC97-H and PLC/PRF/5 cell lines. The group of MHCC97-H cell line readily metastasis in the liver, whereas group PLC/PRF/5 cell line developed extensive intrahepatic metastasis and formed large tumor in situ in the spleen. MHCC97-H and PLC/PRF/5 cell lines can be used to successfully establish a model of HCC intrahepatic metastasis with distinctive characteristics, which provides an important direction for the study of the mechanism of HCC intrahepatic metastasis, and may hopefully provide a basis for clinical treatment.
Early-onset gastric cancer (EOGC) is a serious social burden. For patients with EOGC, typically considered as those aged <45 years, the underlying cause of the disease remains unclear. In addition, several misunderstandings of EOGC remain in clinical practice. Upon diagnosis, numerous patients with EOGC are already at an advanced stage (stage IV) of the disease and are unable to benefit from treatment. Moreover, several conclusions and data obtained from different EOGC studies appear to be to contradictory. The literature indicates that the incidence of EOGC is gradually rising, and that EOGC differs from traditional and familial gastric cancer in terms of clinicopathological characteristics. Patients with EOGC typically exhibit low survival rates, poor prognosis, rapid disease progression, a low degree of differentiation (signet-ring cell tumors are common) and rapid lymph node and distant metastasis, among other characteristics. The molecular genetic mechanisms of EOGC are also significantly different from those of traditional gastric cancer. An improved definition of EOCG may provide a reference for clinical diagnosis and treatment, and clear guidelines may serve as a basis for more accurate diagnosis and the development of effective treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.