Here, we present a protocol for the isolation of endothelial cells (ECs) from tissues. ECs make up a minor population of cells in a tissue, but play a major role in tissue homeostasis, as well as in diverse pathologies. To understand the biology of ECs, characterization of this cell population is highly desirable, but requires the availability of purified cells. For this purpose, tissues are mechanically minced and subsequently digested enzymatically with collagenase and dispase. ECs in the resulting single-cell suspension are labeled with Abs against EC surface antigens and separated from the remainder of the cells and debris by capture with magnetic beads or by high-speed cell sorting. Purified ECs are viable and suitable for characterization of diverse cellular properties. This protocol is optimized for human tissues but can also be adapted for use with other species. Depending on the tissue, the procedure can be completed in approximately 6 h.
Rationale
Unlike conventional dendritic cells (cDC), plasmacytoid DCs (pDC) are poor in antigen presentation and critical for type I interferon response. While proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive.
Objective
To investigate the role of pDC in atherosclerosis.
Methods and Results
We show that pDC are scarcely present in human atherosclerotic lesions, and almost absent in mouse plaques. Surprisingly, pDC depletion by 120G8 mAb administration was seen to promote plaque T cell accumulation and exacerbate lesion development and progression in LDLr−/− mice. PDC depletion was accompanied by increased CD4+ T cell proliferation, IFN-γ expression by splenic T cells and plasma IFN-γ levels. Lymphoid tissue pDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the pDC suppressive effect on T cell proliferation.
Conclusion
Our data reveal a protective role for pDC in atherosclerosis, possibly by dampening T cell proliferation and activity in peripheral lymphoid tissue, rendering pDC an interesting target for future therapeutic interventions.
R NA-binding proteins are central regulators of gene expression in both health and disease. 1,2 The RNA-binding protein Quaking (QKI) is a member of the highly conserved signal transduction and activator of RNA (STAR) family of RNA-binding proteins. 3 Alternative splicing of the mammalian qkI transcript yields 3 protein isoforms, notably QKI-5, QKI-6, and QKI-7, 2 with dimerization of QKI isoforms being required for the regulation of pre-mRNA splicing, mRNA export, and stability. 2,4 QKI drives central and peripheral nervous system myelination by regulating oligodendrocyte and Schwann cell differentiation, respectively. 2,4,5 However, a role for QKI outside the neural network is poorly understood.
In This
To generate antibodies to defined cell-surface antigens, we used a large phage antibody fragment library to select on cell transfectants expressing one of three chosen receptors. First, in vitro panning procedures and phage antibody screening ELISAs were developed using whole live cells stably expressing the antigen of interest. When these methodologies were applied to Chinese hamster ovary (CHO) cells expressing one of the receptors for a neuropeptide, somatostatin, using either direct cell panning or a strategy of depletion or ligand-directed elution, many different pan-CHO-cell binders were selected, but none was receptor specific. However, when using direct panning on CHO-cells expressing the human membrane protein CD36, an extraordinary high frequency of antigenspecific phage antibodies was found. Panning on myoblasts expressing the rat homologue of CD36 revealed a similar selection dominance for anti-(CD36). Binding of all selected 20 different anti-(CD36) phage was surprisingly inhibited by one anti-(CD36) mAb CLB-IVC7, which recognizes a functional epitope that is also immunodominant in vivo. Similar inhibition was found for seven anti-(rat) CD36 that cross-reacted with human CD36. Our results show that, although cells can be used as antigen carriers to select and screen phage antibodies, the nature of the antigen target has a profound effect on the outcome of the selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.