The accurate characterization of nonequilibrium strongly correlated quantum systems has been a longstanding challenge in many-body physics. Notable among them are quantum impurity models, which appear in various nanoelectronic and quantum computing applications. Despite their seeming simplicity, they feature correlated phenomena, including small emergent energy scales and non-Fermi-liquid physics, requiring renormalization group treatment. This has typically been at odds with the description of their nonequilibrium steady state under finite bias, which exposes their nature as open quantum systems. We present a numerically exact method for obtaining the nonequilibrium state of a general quantum impurity coupled to metallic leads at arbitrary voltage or temperature bias, which we call "RL-NESS" (renormalized Lindblad-driven nonequilibrium steady state). It is based on coherently coupling the impurity to discretized leads which are treated exactly. These leads are furthermore weakly coupled to reservoirs described by Lindblad dynamics which impose voltage or temperature bias. Going beyond previous attempts, we exploit a hybrid discretization scheme for the leads together with Wilson's numerical renormalization group, in order to probe exponentially small energy scales. The steady state is then found by evolving a matrix-product density operator via real-time Lindblad dynamics, employing a dissipative generalization of the time-dependent density matrix renormalization group. In the long-time limit, this procedure successfully converges to the steady state at finite bond dimension due to the introduced dissipation, which bounds the growth of entanglement. We thoroughly test the method against the exact solution of the noninteracting resonant level model. We then demonstrate its power using an interacting two-level model, for which it correctly reproduces the known limits, and gives the full I-V curve between them.
Topological superconductivity is an exotic phase of matter in which the fully gapped superconducting bulk hosts gapless Majorana surface states protected by topology. Intercalation of copper, strontium, or niobium between the quintuple layers of the topological insulator Bi 2 Se 3 increases the carrier density and leads to superconductivity that is suggested to be topological. Here we study the electronic structure of strontium-intercalated Bi 2 Se 3 using angle-resolved photoemission spectroscopy and Shubnikov-de Haas oscillations. Despite the apparent low Hall number of ∼2 × 10 19 cm −3 , we show that the Fermi surface has the shape of an open cylinder with a larger carrier density of ∼10 20 cm −3 . We suggest that superconductivity in intercalated Bi 2 Se 3 emerges with the appearance of a quasi-two-dimensional open Fermi surface.
Non-abelian anyons are fractional excitations of gapped topological models believed to describe certain topological superconductors or quantum Hall states. Here, we provide the first numerical evidence that these particles emerge also in gapless electronic models. Starting from a multiimpurity multi-channel chiral Kondo model, we introduce a novel mapping to a single-impurity model, amenable to Wilson's numerical renormalization group. We extract its spectral degeneracy structure and fractional entropy, and calculate the F-matrices, which encode the topological information regarding braiding of anyons, directly from impurity spin-spin correlations. Impressive recent advances on realizing multichannel Kondo systems with chiral edges may thus bring anyons into reality sooner than expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.