Robotic advances and developments in sensors and acquisition systems facilitate the collection of survey data in remote and challenging scenarios. Semantic segmentation, which attempts to provide per‐pixel semantic labels, is an essential task when processing such data. Recent advances in deep learning approaches have boosted this task's performance. Unfortunately, these methods need large amounts of labeled data, which is usually a challenge in many domains. In many environmental monitoring instances, such as the coral reef example studied here, data labeling demands expert knowledge and is costly. Therefore, many data sets often present scarce and sparse image annotations or remain untouched in image libraries. This study proposes and validates an effective approach for learning semantic segmentation models from sparsely labeled data. Based on augmenting sparse annotations with the proposed adaptive superpixel segmentation propagation, we obtain similar results as if training with dense annotations, significantly reducing the labeling effort. We perform an in‐depth analysis of our labeling augmentation method as well as of different neural network architectures and loss functions for semantic segmentation. We demonstrate the effectiveness of our approach on publicly available data sets of different real domains, with the emphasis on underwater scenarios—specifically, coral reef semantic segmentation. We release new labeled data as well as an encoder trained on half a million coral reef images, which is shown to facilitate the generalization to new coral scenarios.
Marine animal forests are benthic communities dominated by sessile suspension feeders (such as sponges, corals, and bivalves) able to generate three-dimensional (3D) frameworks with high structural complexity. The biodiversity and functioning of marine animal forests are strictly related to their 3D complexity. The present paper aims at providing new perspectives in underwater optical surveys. Starting from the current gaps in data collection and analysis that critically limit the study and conservation of marine animal forests, we discuss the main technological and methodological needs for the investigation of their 3D structural complexity at different spatial and temporal scales. Despite recent technological advances, it seems that several issues in data acquisition and processing need to be solved, to properly map the different benthic habitats in which marine animal forests are present, their health status and to measure structural complexity. Proper precision and accuracy should be chosen and assured in relation to the biological and ecological processes investigated. Besides, standardized methods and protocols are strictly necessary to meet the FAIR (findability, accessibility, interoperability, and reusability) data principles for the stewardship of habitat mapping and biodiversity, biomass, and growth data.
In an endeavor to study natural systems at multiple spatial and taxonomic resolutions, there is an urgent need for automated, high-throughput frameworks that can handle plethora of information. The coalescence of remote-sensing, computer-vision, and deep-learning elicits a new era in ecological research. However, in complex systems, such as marine-benthic habitats, key ecological processes still remain enigmatic due to the lack of cross-scale automated approaches (mms to kms) for community structure analysis. We address this gap by working towards scalable and comprehensive photogrammetric surveys, tackling the profound challenges of full semantic segmentation and 3D grid definition. Full semantic segmentation (where every pixel is classified) is extremely labour-intensive and difficult to achieve using manual labeling. We propose using label-augmentation, i.e., propagation of sparse manual labels, to accelerate the task of full segmentation of photomosaics. Photomosaics are synthetic images generated from a projected point-of-view of a 3D model. In the lack of navigation sensors (e.g., a diver-held camera), it is difficult to repeatably determine the slope-angle of a 3D map. We show this is especially important in complex topographical settings, prevalent in coral-reefs. Specifically, we evaluate our approach on benthic habitats, in three different environments in the challenging underwater domain. Our approach for label-augmentation shows human-level accuracy in full segmentation of photomosaics using labeling as sparse as 0.1%, evaluated on several ecological measures. Moreover, we found that grid definition using a leveler improves the consistency in community-metrics obtained due to occlusions and topology (angle and distance between objects), and that we were able to standardise the 3D transformation with two percent error in size measurements. By significantly easing the annotation process for full segmentation and standardizing the 3D grid definition we present a semantic mapping methodology enabling change-detection, which is practical, swift, and cost-effective. Our workflow enables repeatable surveys without permanent markers and specialized mapping gear, useful for research and monitoring, and our code is available online. Additionally, we release the Benthos data-set, fully manually labeled photomosaics from three oceanic environments with over 4500 segmented objects useful for research in computer-vision and marine ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.