Here, we provided the first evidences of yeast strains assisted Ag/AgCl-NPs production in vitro. The formed nanoparticles were characterized by spectroscopic and electron microscopy approaches. UV-Vis supported the biosynthesis. TEM analysis evidenced that nanoparticles mainly presented circular shape and their diameter varied mostly in the range from 2 to 10 nm. XRD analysis showed a crystalline structure, with diffraction peaks corresponding to metallic silver and silver chloride nanoparticles, and when analyzed by high-resolution transmission electron microscopy (HRTEM), instead of being round, (111) (octahedral) and (200) Ag/AgCl-NPs described here have characteristics compatible with a strong potential for use in the biotechnology industry, particularly for biomedical applications.
The study draws attention to gold nanoparticles as a resource for technological innovation in the anti-inflammatory, analgesic and anti-tumor fields. GNPs have biological effects that deserve investigation to assess their full interaction with organic systems.
The investigations of the antibacterial actions, observed in ternary associations involving silver nanoparticles (AgNPs), chitosan and the antibiotics azithromycin (AZ), levofloxacin (LE) or tetracycline (TE), against Gram-negative and Gram-positive bacterial strains, were performed by in vitro antimicrobial susceptibility testing and checkerboard assays. The pH impact in the culture medium was carefully discarded, but preserving the best conditions for solubilizing chitosan. The synergistic antibacterial effects were observed in the most combinations of AgNPs, chitosan and antibiotic, leading to a reduction from 37 to 97% in the minimum inhibitory concentration of the drugs. The mechanisms for the enhanced antimicrobial effects were proposed based on the investigations of the adsorptions of the drugs on the silver surfaces through surface-enhanced Raman scattering (SERS) spectroscopy.
Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL Ag/AgCl-NPs with that of 9.7-48.5 µg mL temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs + TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs + TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~ 67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP + TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.