In the present study, the crystal structure, microstructure, mechanical, corrosion properties, and wettability of bulk Ti23Zr25Nb-x45S5 Bioglass (x = 0, 3, 6, 9 wt.%) and Ti23Zr25Nb—9 wt.% 45S5 Bioglass composites with the addition of 1 wt.% Ag, Cu, or Zn were synthesized and their properties studied. The hardness of these biomaterials is at least two times higher and the elastic modulus lower in comparison to commercial purity (CP) microcrystalline α-Ti. The mechanically alloyed Ti23Zr25Nb—9 wt.% 45S5 Bioglass composite was more corrosion resistant in Ringer’s solution than the bulk Ti23Zr25Nb alloy. Surface wettability measurements revealed the higher surface hydrophilicity of the bulk synthesized composites. The antibacterial activity of Ti23Zr25Nb-based composites containing silver, copper, or zinc against reference strain Streptococcus mutans ATCC 25175 was studied. In vitro bacterial adhesion indicated a significantly reduced number of S. mutans on the bulk Ti23Zr25Nb-BG-Ag (or Cu, Zn) plate surfaces in comparison to the microcrystalline Ti plate surface. Ultrafine-grained Ti23Zr25Nb-BG-Ag (or Cu, Zn) biomaterials can be considered to be the next generation of dental implants.
In this study, the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions were produced by application of the mechanical alloying technique. Additionally, the base Ti23Zr25Nb alloy was electrochemically modified in the two stages of processing: electrochemical etching in the solution of H3PO4 and HF followed by electrochemical deposition in Ca(NO3)2, (NH4)2HPO4, and HCl. The in vitro cytocompatibility studies were also done with comparison to the commercially pure titanium. The established cell lines of Normal Human Osteoblasts (NHost, CC-2538) and Human Periodontal Ligament Fibroblasts (HPdLF, CC-7049) were used. The culture was conducted among the tested materials. Ultrafine-grained titanium-based composites modified with 45S5 Bioglass and Ag, Cu, or Zn metals have higher biocompatibility than the reference material in the form of a microcrystalline Ti. Proliferation activity was at a stable level with contact with studied materials. In vitro evaluation research showed that the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions, with a Young modulus below 50 GPa, can be further used in the biomedical field.
Titanium β-type alloys are preferred biomaterials for hard tissue replacements due to the low Young modulus and limitation of harmful aluminum and vanadium present in the commercially available Ti6Al4V alloy. The aim of this study was to develop a new ternary Ti-Zr-Nb system at 36≤Ti≤70 (at. %). The technical viability of preparing Ti-Zr-Nb alloys by high-energy ball-milling in a SPEX 8000 mill has been studied. These materials were prepared by the combination of mechanical alloying and powder metallurgy approach with cold powder compaction and sintering. Changes in the crystal structure as a function of the milling time were investigated using X-ray diffraction. Our study has shown that mechanical alloying supported by cold pressing and sintering at the temperature below α→β transus (600°C) can be applied to synthesize single-phase, ultrafine-grained, bulk Ti(β)-type Ti30Zr17Nb, Ti23Zr25Nb, Ti30Zr26Nb, Ti22Zr34Nb, and Ti30Zr34Nb alloys. Alloys with lower content of Zr and Nb need higher sintering temperatures to have them fully recrystallized. The properties of developed materials are also engrossing in terms of their biomedical use with Young modulus significantly lower than that of pure titanium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.