The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant “drug-likeness” scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the “fresh outlook” about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
The influence of an inorganic support - halloysite nanotubes - on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/Alginate gels. The material functionalized with aliphatic amine significantly extended the release of vancomycin from alginate-based gels as compared to that achieved when silica was used. After 24 h, the released amounts of the antibiotic immobilized at silica reached 70%, while for the drug immobilized at halloysite the released amount of vancomycin reached 44% for Alginate discs. The addition of gelatin resulted in even more prolonged sustained release of the drug. The antibiotic was released from the system with a double barrier with Higuchi kinetic model and Fickian diffusion mechanism. Only the immobilized drug encapsulated in Alginate gel demonstrated very good antimicrobial activity against various bacteria. The inhibition zones were greater than those of the standard discs for the staphylococci and enterococci bacteria tested. The addition of gelatin adversely affected the biological activity of the system. The inhibition zones were smaller than those of the reference samples. A reduction in the drug dose by half had no significant effect on changing the release rate and microbiological activity. The toxicity studies of the material with immobilized drug were carried out with and . The material studied had no effect on the living organisms used in the bioassays. The proposed system with a double barrier demonstrated high storage stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.