We demonstrate the photoassociation of ultracold rubidium dimers using coherent femtosecond pulses. Starting from a cloud of ultracold rubidium atoms, electronically excited rubidium molecules are formed with shaped photoassociation pump pulses. The excited state molecules are projected with a time-delayed probe pulse onto molecular ion states which are detected in a mass spectrometer. Coherent transient oscillations of the excited state population are observed in the wings of the pump pulse, in agreement with the time-dependent solution of the Schrödinger equation of the excitation process.
We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photo-induced processes in molecular quantum gases.
We present a shaper scheme that fully controls the spectral phase, amplitude, and polarization of femtosecond laser pulses. In particular, it enables independent manipulation over the major axis orientation and the axis ratio of the polarization ellipse. This is accomplished by integrating a 4f-shaper setup in both arms of a Mach-Zehnder interferometer and rotating the polarization by 90 degrees in one of the arms before overlaying the beams. The generated pulses are resolved in a simple and intuitive detection scheme.
We report on selective optimization of different isotopes in an ionization process by means of spectrally broad shaped fs-laser pulses. This is demonstrated for (39,39)K2 and (39,41)K2 by applying evolution strategies in a feedback loop, whereby a surprisingly high enhancement of one isotope versus the other and vice versa is achieved (total factor approximately 140). Information about the dynamics on the involved vibrational states is extracted from the optimal pulse shapes, which provides a new spectroscopical approach of yielding distinct frequency pattern on fs-time scales. The method should, in principle, be feasible for all molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.