The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
Plants and seeds are the main source of essential nutrients for humans and livestock. Many advances have recently been made in understanding the molecular mechanisms by which plants take up and accumulate micronutrients such as iron, zinc, copper and manganese. Some of these mechanisms, however, also facilitate the accumulation of non-essential toxic elements such as cadmium (Cd) and arsenic (As). In humans, Cd and As intake has been associated with multiple disorders including kidney failure, diabetes, cancer and mental health issues. Recent studies have shown that some transporters can discriminate between essential metals and non-essential elements. Furthermore, sequestration of non-essential elements in roots has been described in several plant species as a key process limiting the translocation of non-essential elements to aboveground edible tissues, including seeds. Increasing the concentration of bioavailable micronutrients (biofortification) in grains while lowering the accumulation of non-essential elements will likely require the concerted action of several transporters. This review discusses the most recent advances on mineral nutrition that could be used to preferentially enrich seeds with micronutrients and also illustrates how precision breeding and transport engineering could be used to enhance the nutritional value of crops by re-routing essential and non-essential elements to separate sink tissues (roots and seeds).
The starvation-stress response (SSR) of Salmonella typhimurium encompasses the physiological changes that occur upon starvation for an essential nutrient, e.g. C-source. A subset of SSR genes, known as core SSR genes, are required for the long-term starvation survival of the bacteria. Four core SSR loci have been identified in S. typhimurium: rpoS, stiA, stiB, and stiC. Here we report that in S. typhimurium C-starvation induced a greater and more sustainable cross-resistance to oxidative challenge (15 mM hydrogen peroxide (H2O2) for 40 min) than either N- or P-starvation. Of the four core SSR loci, only rpoS and stiC mutants exhibited a defective C-starvation-inducible cross-resistance to H2O2 challenge. Interestingly, (unadapted) log-phase S. typhimurium rpoS and stiA mutants were very sensitive to oxidative challenge. Based on this, we determined if these core SSR loci were important for H2O2 resistance developed during a 60 min adaptive exposure to 60 microM H2O2 (adapted cells). Both unadapted and adapted rpoS and stiA mutants were hypersensitive to a H2O2 challenge. In addition, a stiB mutant exhibited normal adaptive resistance for the first 20 mins of H2O2 challenge but then rapidly lost viability, declining to a level of about 1.5% of the wild-type strain. The results of these experiments indicate that: (i) the rpoS and stiC loci are essential for the development of C-starvation-inducible cross-resistance to oxidative challenge, and (ii) the rpoS, stiA, and, in a delayed effect, stiB loci are needed for H2O2-inducible adaptive resistance to oxidative challenge. Moreover, we found that both stiA and stiB are induced by a 60 microM H2O2 exposure, but only stiA was regulated (repressed) by (reduced form) OxyR.
In vivo modulation of HMG-CoA reductase (HMGR) activity and its impact on artemisinin biosynthesis as well as accumulation were studied through exogenous supply of labeled HMG-CoA (substrate), labeled MVA (the product), and mevinolin (the competitive inhibitor) using twigs of Artemisia annua L. plants collected at the preflowering stage. By increasing the concentration (2-16 lM) of HMG-CoA (3-14 C)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.