Many species of insect pests can be detected and monitored automatically. Several systems have been designed in order to improve integrated pest management (IPM) in the context of precision agriculture. Automatic detection traps have been developed for many important pests. These techniques and new technologies are very promising for the early detection and monitoring of aggressive and quarantine pests. The aim of the present paper is to review the techniques and scientific state of the art of the use of sensors for automatic detection and monitoring of insect pests. The paper focuses on the methods for identification of pests based in infrared sensors, audio sensors and image-based classification, presenting the different systems available, examples of applications and recent developments, including machine learning and Internet of Things. Future trends of automatic traps and decision support systems are also discussed.
A crop monitoring system was developed for the supervision of organic fertilization status on tomato plants at early stages. An automatic and nondestructive approach was used to analyze tomato plants with different levels of water-soluble organic fertilizer (3 + 5 NK) and vermicompost. The evaluation system was composed by a multispectral camera with five lenses: green (550 nm), red (660 nm), red edge (735 nm), near infrared (790 nm), RGB, and a computational image processing system. The water-soluble fertilizer was applied weekly in four different treatments: (T0: 0 mL, T1: 6.25 mL, T2: 12.5 mL and T3: 25 mL) and the vermicomposting was added in Weeks 1 and 5. The trial was conducted in a greenhouse and 192 images were taken with each lens. A plant segmentation algorithm was developed and several vegetation indices were calculated. On top of calculating indices, multiple morphological features were obtained through image processing techniques. The morphological features were revealed to be more feasible to distinguish between the control and the organic fertilized plants than the vegetation indices. The system was developed in order to be assembled in a precision organic fertilization robotic platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.