The ethanol extract from M. alba leaves administered intraperitoneally possesses a greater degree of toxicity in mice when compared to per os administration. The extract was not genotoxic when ingested by mice and exhibited a highly inhibitory effect against acute inflammation, which is probably linked to the presence of chlorogenic acid and flavonoids in the composition. This work contributes to the determination of safety of the medicinal use of M. alba leaves.
The ethanolic extract from Croton blanchetianus leaves has been shown to have antinociceptive activity in mice. Here, we investigated the antinociceptive activity of an ethyl acetate fraction (EAF) from this extract in mice and the possible pathways involved in the analgesic effect. Adverse effects on behavior and motor coordination were also evaluated. The EAF was characterized by liquid chromatography coupled with mass spectrometry and evaluated (12.5, 25, and 50 mg/kg per os) in the acetic acid-induced abdominal writhing, formalin, hot plate, and tail immersion assays. Naloxone, atropine, glibenclamide, prazosin, or yohimbine was pre-administered to mice to investigate the involved pathways in the formalin test. The open-field, rotarod, and elevated plus-maze tests were used to assess behavior and locomotion. The main components of the EAF were quercetin-3-O-(2-rhamnosyl) rutinoside, hyperoside, quercetin rutinoside pentoside, and quercetin hexoside deoxyhexoside. EAF showed antinociceptive effects in all models and was effective against both neurogenic and inflammatory pain. The reversion of the effects in the formalin test by naloxone and atropine revealed that the EAF acted via the opioid and cholinergic systems. In the open-field test, the behavior of the animals treated with the EAF was like that of control, except at the highest dose, when hypnosis, eyelid ptosis, decreased walking, hygiene, and rearing behaviors were observed. No muscle relaxant effect was observed, but an anxiogenic effect was observed at all doses. This study provides new scientific evidence on the pharmacological properties of C. blanchetianus leaves and their potential for the development of phytomedicines with analgesic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.