The butylselanyl propargyl alcohols reacted with iodine to afford 3-iodoselenophenes. The change of nucleophile position from propargyl to homopropargyl was crucial for the aromatization and formation of selenophene rings. The experiments revealed that bromine and N-bromosuccinimide were not able to cyclize the butylselanyl propargyl alcohols; however, when the bromine source was copper(II) bromide the corresponding 3-bromoselenophenes were obtained in good yields. In addition, the reaction of butylselanyl propargyl alcohols with diorganyl diselenides catalyzed by copper(I) iodide gave the 3-(organoselanyl)selenophenes. The reaction took place with aromatic rings substituted by either electron-donating or -withdrawing groups in the alkynes and propargyl positions. The steric effects of substituents were dominant in determining the yields, whereas electronic effects had only a minor influence. Furthermore, by monitoring the reaction by H NMR, we were able to identify the key intermediate, which supported the elaboration of a proposed reaction mechanism. The 3-iodoselenophenes prepared allowed the synthesis of multifunctional selenophenes via application in metal-catalyzed coupling reactions, such as Sonogashira, Ullmann and Suzuki type reactions.
We report here the regioselective 6-endo-dig cyclization of [2-(butylselanyl)phenyl]propynols promoted by the cooperative action between diorganyl diselenides and iron(III) chloride leading to the formation of 4-methylene-3-(organoselanyl)-selenochromenes. The results of the reaction condition optimization studies showed that the solvent, the iron source, and the amount of diorganyl diselenide had a fundamental influence on the reaction yields. In the presence of iron(III) chloride (1.5 equiv) and diorganyl diselenides (1.0 equiv), using dichloromethane as the solvent, at room temperature, 4-methylene-3-(organoselanyl)-selenochromenes were formed in moderate to good yields. The reaction conditions were found to be suitable for substrates bearing electron-donating and electron-withdrawing groups on the aromatic ring at both propargyl and alkyne positions. However, we observed a limitation in the reaction conditions when they were applied to other diorganyl dichalcogenides, such as diorganyl disulfides and diorganyl ditellurides, which did not give the corresponding products. We also elaborated on a mechanism proposal based on control experiments performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.