The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast spreading virus leading to the development of Coronavirus Disease-2019 (COVID-19). Severe and critical cases are characterized by damage to the respiratory system, endothelial inflammation, and multiple organ failure triggered by an excessive production of proinflammatory cytokines, culminating in the high number of deaths all over the world. Sedentarism induces worse, continuous, and progressive consequences to health. On the other hand, physical activity provides benefits to health and improves low-grade systemic inflammation. The aim of this review is to elucidate the effects of physical activity in physical fitness, immune defense, and its contribution to mitigate the severe inflammatory response mediated by SARS-CoV-2. Physical exercise is an effective therapeutic strategy to mitigate the consequences of SARS-CoV-2 infection. In this sense, studies have shown that acute physical exercise induces the production of myokines that are secreted in tissues and into the bloodstream, supporting its systemic modulatory effect. Therefore, maintaining physical activity influence balance the immune system and increases immune vigilance, and also might promote potent effects against the consequences of infectious diseases and chronic diseases associated with the development of severe forms of COVID-19. Protocols to maintain exercise practice are suggested and have been strongly established, such as home-based exercise (HBE) and outdoor-based exercise (OBE). In this regard, HBE might help to reduce levels of physical inactivity, bed rest, and sitting time, impacting on adherence to physical activity, promoting all the benefits related to exercise, and attracting patients in different stages of treatment for COVID-19. In parallel, OBE must improve health, but also prevent and mitigate COVID-19 severe outcomes in all populations. In conclusion, HBE or OBE models can be a potent strategy to mitigate the progress of infection, and a coadjutant therapy for COVID-19 at all ages and different chronic conditions.
Background. Physical exercise (PE) has been associated with increase neuroplasticity, neurotrophic factors, and improvements in brain function. Objective. To evaluate the effects of different PE protocols on neuroplasticity components and brain function in a human and animal model. Methods. We conducted a systematic review process from November 2019 to January 2020 of the following databases: PubMed, ScienceDirect, SciELO, LILACS, and Scopus. A keyword combination referring to PE and neuroplasticity was included as part of a more thorough search process. From an initial number of 20,782 original articles, after reading the titles and abstracts, twenty-one original articles were included. Two investigators evaluated the abstract, the data of the study, the design, the sample size, the participant characteristics, and the PE protocol. Results. PE increases neuroplasticity via neurotrophic factors (BDNF, GDNF, and NGF) and receptor (TrkB and P75NTR) production providing improvements in neuroplasticity, and cognitive function (learning and memory) in human and animal models. Conclusion. PE was effective for increasing the production of neurotrophic factors, cell growth, and proliferation, as well as for improving brain functionality.
Long-distance running is an exhausting effort for the whole organism. Prolonged aerobic exercise induces changes in inflammatory markers. However, predicting muscle damage in response has limitations in terms of selecting biomarkers used to measure inflammatory status. The present study conducts a systematic review and meta-analysis of articles focusing in ultra-marathon, marathon, and half-marathon and levels of cytokines. The search was conducted in PubMed, Web of Science, and Scopus databases, resulting in the inclusion of 76 articles. IL-6 was highlighted, evaluated in 62 studies and show increase in the standard mean difference (SMD): half-marathon (SMD −1.36; IC 95%: −1.82, −0.89, Ch2:0.58; tau2:0.00; p < 0.0001), marathon (SMD −6.81; IC 95%: −9.26, −4.37; Ch2:481.37 tau2:11.88; p < 0.0001) and ultra-marathon (SMD −8.00 IC 95%: −10.47, −5.53; Ch2:328.40; tau2:14.19; p < 0.0001). In contrast meta-regression analysis did not show relationship to the running distance (p = 0.864). The meta-analysis evidenced increase in the concentration of IL-1ra (p < 0.0001), IL-1B (p < 0.0001), IL-8 (p < 0.0001), IL-10 (p < 0.0001) and TNF-α (p < 0.0001). Reduction in IL-2 (p < 0.0001) and INF-y (p < 0.03) and no change in the IL-4 (p < 0.56). The number of studies evaluating the effect of adipokines was limited, however Leptin and Resistin were recurrent. The effects of an acute bout of prolonged aerobic exercise will protect against chronic systemic inflammation. The time to return to baseline values showed a substantial and dose-dependent relationship with run volume. The concentration of IL-6 was robustly studied and the marathon running was the most explored. Network of endocrine interactions in which circulating factors, released in extreme exercises, interplay through inter-organ crosstalk and physiologic changes were expressed. The running volume variability was able to modulate compounds that play a fundamental role in the maintenance of homeostasis and cell signaling.
No abstract
Childhood obesity is a serious public health problem. Childhood obesity and overweight are associated with the appearance of coordination deficit disorder and can cause impaired motor performance. We searched online databases for all related articles using comprehensive international databases from the Medline PubMed Institute, Web of Science, ScienceDirect, SCOPUS, and PsycINFO up to December 20, 2020. Overall, 33 studies were included in this systematic review. The present review demonstrated that children with higher percentage of body fat had lower levels of moderate to vigorous physical activity, as well as decreased levels of gross motor coordination, as shown by tests for neuromuscular performance. These results corroborate the hypothesis that overweight and obesity in children and adolescents are associated, not only with insufficient performance during gross motor coordination activities, but also with a greater risk to physical health.Systematic Review Registration[https://www.crd.york.ac.uk/prospero/], identifier [CRD42020182935].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.