Ecosystem monitoring is central to effective management, where rapid reporting is essential to provide timely advice. While digital imagery has greatly improved the speed of underwater data collection for monitoring benthic communities, image analysis remains a bottleneck in reporting observations. In recent years, a rapid evolution of artificial intelligence in image recognition has been evident in its broad applications in modern society, offering new opportunities for increasing the capabilities of coral reef monitoring. Here, we evaluated the performance of Deep Learning Convolutional Neural Networks for automated image analysis, using a global coral reef monitoring dataset. The study demonstrates the advantages of automated image analysis for coral reef monitoring in terms of error and repeatability of benthic abundance estimations, as well as cost and benefit. We found unbiased and high agreement between expert and automated observations (97%). Repeated surveys and comparisons against existing monitoring programs also show that automated estimation of benthic composition is equally robust in detecting change and ensuring the continuity of existing monitoring data. Using this automated approach, data analysis and reporting can be accelerated by at least 200x and at a fraction of the cost (1%). Combining commonly used underwater imagery in monitoring with automated image annotation can dramatically improve how we measure and monitor coral reefs worldwide, particularly in terms of allocating limited resources, rapid reporting and data integration within and across management areas.
Recent advances in deep learning are having a profound impact on human civilisation, permeating every aspect of our daily lives (Makridakis, 2017). So too is the impact deep learning is having on the field of ecology, enabling the rapid analysis of vast amounts of data, the likes we have not seen before (Brandt et al., 2020). At a time where we are seeing rapid decline of health and biodiversity of terrestrial and marine environments ('IPCC Special Report: Global Warming of 1.5°C', 2018), the presence of this technology offers a glimmer of hope for the rapid analysis at the grand scale we need to enable intervention and detect habitat change.
Clinical narratives (the text notes found in patients’ medical records) are important information sources for secondary use in research. However, in order to protect patient privacy, they must be de-identified prior to use. Manual de-identification is considered to be the gold standard approach but is tedious, expensive, slow, and impractical for use with large-scale clinical data. Automated or semi-automated de-identification using computer algorithms is a potentially promising alternative. The Informatics Institute of the University of Alabama at Birmingham is applying de-identification to clinical data drawn from the UAB hospital’s electronic medical records system before releasing them for research. We participated in a shared task challenge by the Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-GRID) at the de-identification regular track to gain experience developing our own automatic de-identification tool. We focused on the popular and successful methods from previous challenges: rule-based, dictionary-matching, and machine-learning approaches. We also explored new techniques such as disambiguation rules, term ambiguity measurement, and used multi-pass sieve framework at a micro level. For the challenge’s primary measure (strict entity), our submissions achieved competitive results (f-measures: 87.3%, 87.1%, and 86.7%). For our preferred measure (binary token HIPAA), our submissions achieved superior results (f-measures: 93.7%, 93.6%, and 93%). With those encouraging results, we gain the confidence to improve and use the tool for the real de-identification task at the UAB Informatics Institute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.