Silicon photonics, considered as a major photonic platform for optical communications in data centers, is today also developed for others applications including quantum photonics and sensing. Advanced silicon functionalities based on optical nonlinearities are then required. As the presence of inversion symmetry in the Si crystal structure prevents the exploitation of second-order optical nonlinearities, the generation of strain gradients in Si by a stressed material can be considered. However, due to the semiconductor nature of silicon with the presence of carriers, no clear evidence of second-order nonlinearities have been reported yet. Here we report an experimental demonstration of high-speed Pockels effect in silicon waveguides at 1550 nm. Additionally, a theoretical model is developed to describe its frequency behavior. A second-order nonlinear susceptibility χ ð2Þ xxy of −1.8 ± 0.2 pm V −1 is then experimentally determined. These results pave the way for the development of fast linear electro-optic effect for advanced silicon photonics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.