The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.
Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-user perspective. The developed metrics are used to benchmark the performance of a statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine learning model, namely, Random Forest, an ensemble learning method based on decision trees. The models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany (115,258 inspections). At network level, both models give satisfactory outcomes with deviations between predicted and inspected condition distributions below 5%. At pipe level, the statistical model does not perform better than a simple random model, which attributes randomly a condition class to each inspected pipe, whereas the machine learning model provides satisfying performance. 66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning approach shows a strong potential for supporting operators in the identification of pipes in critical condition for inspection programs whereas the statistical approach is more adapted to support strategic rehabilitation planning.
The effect of combined sewer overflow (CSO) control measures should be validated during operation based on monitoring of CSO activity and subsequent comparison with (legal) requirements. However, most CSO monitoring programs have been started only recently and therefore no long-term data is available for reliable efficiency control. A method is proposed that focuses on rainfall data for evaluating the effectiveness of CSO control measures. It is applicable if a sufficient time-series of rainfall data and a limited set of data on CSO discharges are available. The method is demonstrated for four catchments of the Berlin combined sewer system. The analysis of the 2000-2007 data shows the effect of CSO control measures, such as activation of in-pipe storage capacities within the Berlin system. The catchment, where measures are fully implemented shows less than 40% of the CSO activity of those catchments, where measures have not yet or not yet completely been realised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.