Ferroic materials play an increasingly important role in novel (nano)electronic devices. Recently, research on domain walls (DWs) receives a big boost by the discovery of DW conductivity (DWC) in BiFeO3 and Pb(ZrxTi1‐x)O3 ferroic thin films. Here, it is demonstrated that DWC is not restricted to thin films, but equally applies to millimeter‐thick wide‐bandgap, ferroic single crystals, such as LiNbO3. In this material transport along DWs can be switched by super‐bandgap illumination and tuned by engineering the tilting angle of DWs with respect to the polar axis. The results are consistently obtained using conductive atomic force microscopy to locally map the DWC and macroscopic contacts, thereby in addition investigating the temperature dependence, DW transport activation energies, and relaxation behavior.
Cherenkov second-harmonic generation (CSHG) is a powerful tool for three-dimensional domain wall profiling in ferroic bulk crystals. Here, we apply this noninvasive technique for tracking head-to-head charged domain walls (CDWs) across millimeter-thick ferroelectric single-crystalline lithium niobate. CSHG sensitively reveals the inclination α > 0 of any such CDW with a superb optical resolution. Moreover, we deduce fully charged head-to-head CDWs (α = 90 • ) to be much rougher and to show protrusions, domain inclusions, and novel topologies. Our findings provide insight into the mechanisms of electron transport and charge trapping in CDWs, as is mandatory for their use in prospective nanoelectronic devices.
We report on differentiating antiparallel ferroelectric domains in congruent Mg-doped LiNbO3 (Mg:LNO) single crystals through a multiphoton photoluminescence technique. Sample illumination with femtosecond laser pulses at λ = 790 nm results in a broad multiphoton emission spectrum revealing a domain contrast of >3% between virgin and inverted domains. The contrast decreases via annealing and shows an exponential decay in the temperature range from 80 to 150 °C. Our findings give clear ground of a thermally induced structural change by surpassing a specific activation energy. Hence, the reported contrast dynamics must be closely connected to the thermal activation of charged defects, which dramatically alters the internal bias field of these defects. This explanation is also supported when using single crystal LNO of different Mg doping levels showing much lower multiphoton effects for a < 5% Mg concentration. Based on this effect of multiphoton luminescence, it becomes easy to microscopically monitor and quantify virgin and switched domains in LNO and other samples.
The GREENPEG project, which is funded by the European Commission Horizon 2020 ‘Climate action, environment, resource efficiency and raw materials’ programme, aims to develop multi-method exploration toolsets for the identification of European, buried, small-scale (0.01-5 million m3) pegmatite ore deposits of the Nb-Y-F (NYF) and Li-Cs-Ta (LCT) chemical types. The project is being coordinated by the Natural History Museum of the University of Oslo and involves three exploration services/mining operators, one geological survey, three consulting companies and five academic institutions from eight European countries. The target raw materials are Li, high-purity quartz for silica and metallic Si, ceramic feldspar, REE, Ta, Be and Cs, which are naturally concentrated in granitic pegmatites. Silicon and Li are two of the most sought-after green technology metals as they are essential for photovoltaics and Li-ion batteries for electric cars, respectively. GREENPEG will change the focus of exploration strategies from large-volume towards small-volume, high quality ores and overcome the lack of exploration technologies for pegmatite ore deposits by developing toolsets tailored to these ore types. This contribution focuses on the methods applied in the GREENPEG project and as such provides a potential pathway towards the ’Green Stone Age’ from the perspective of pegmatite-sourced minerals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.