Our results indicate that taking additional scans leads to a significant improvement in the calibration. Furthermore, the obtained calibration and reconstruction precisions suggest the use of a TP.
Abstract. In this study, we assessed the targeting precision of a previously reported needle-based soft tissue navigation system. For this purpose, we implanted 10 2-ml agar nodules into three pig livers as tumor models, and two of the authors used the navigation system to target the center of gravity of each nodule. In order to obtain a realistic setting, we mounted the livers onto a respiratory liver motion simulator that models the human body. For each targeting procedure, we simulated the liver biopsy workflow, consisting of four steps: preparation, trajectory planning, registration, and navigation. The lesions were successfully hit in all 20 trials. The final distance between the applicator tip and the center of gravity of the lesion was determined from control computed tomography (CT) scans and was 3.5 ± 1.1 mm on average. Robust targeting precision of this order of magnitude would significantly improve the clinical treatment standard for various CT-guided minimally invasive interventions in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.