Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using a NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer.
Abstract. Patient-specific biomechanical models implemented using specialized nonlinear (i.e. taking into account material and geometric nonlinearities) finite element procedures were applied to predict the deformation field within the brain for five cases of craniotomy-induced brain shift. The procedures utilize the Total Lagrangian formulation with explicit time stepping. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register the preoperative images with the intraoperative ones indicated that the models very accurately predict the intraoperative positions and deformations of the brain anatomical structures for limited information about the brain surface deformations. For each case, it took less than 40 s to compute the deformation field using a standard personal computer, and less than 4 s using a Graphics Processing Unit (GPU). The results suggest that nonlinear biomechanical models can be regarded as one possible method of complementing medical image processing techniques when conducting non-rigid registration within the real-time constraints of neurosurgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.