Abstract. Variability is a central issue in deep submicron technologies, in which it becomes increasingly difficult to produce two chips with the same behavior. While the impact of variability is well understood from the microelectronic point of view, very few works investigated its significance for cryptographic implementations. This is an important concern as 65-nanometer and smaller technologies are soon going to equip an increasing number of security-enabled devices. Based on measurements performed on 20 prototype chips of an AES S-box, this paper provides the first comprehensive treatment of variability issues for side-channel attacks. We show that technology scaling implies important changes in terms of physical security. First, common leakage models (e.g. based on the Hamming weight of the manipulated data) are no longer valid as the size of transistors shrinks, even for standard CMOS circuits. This impacts both the evaluation of hardware countermeasures and formal works assuming that independent computations lead to independent leakage. Second, we discuss the consequences of variability for profiled side-channel attacks. We study the extend to which a leakage model that is carefully profiled for one device can lead to successful attacks against another device. We also define the perceived information to quantify this context, which generalizes the notion of mutual information with possibly degraded leakage models. Our results exhibit that existing side-channel attacks are not perfectly suited to this new context. They constitute an important step in better understanding the challenges raised by future technologies for the theory and practice of leakage resilient cryptography.
Abstract. Methods for enumerating cryptographic keys based on partial information obtained on key bytes are important tools in cryptanalysis. This paper discusses two contributions related to the practical application and algorithmic improvement of such tools. On the one hand, we observe that modern computing platforms allow performing very large amounts of cryptanalytic operations, approximately reaching 2 50 to 2 60 block cipher encryptions. As a result, cryptographic key sizes for such ciphers typically range between 80 and 128 bits. By contrast, the evaluation of leaking devices is generally based on distinguishers with very limited computational cost, such as Kocher's Differential Power Analysis. We bridge the gap between these cryptanalytic contexts and show that giving side-channel adversaries some computing power has major consequences for the security of leaking devices. For this purpose, we first propose a Bayesian extension of non-profiled side-channel attacks that allows us to rate key candidates in function of their respective probabilities. Next, we investigate the impact of key enumeration taking advantage of this Bayesian formulation, and quantify the resulting reduction in the data complexity of the attacks. On the other hand, we observe that statistical cryptanalyses usually try to reduce the number and size of lists corresponding to partial information on key bytes, in order to limit the time and memory complexity of the key enumeration. Quite surprisingly, few solutions exist that allow an efficient merging of large lists of subkey candidates. We provide a new deterministic algorithm that significantly reduces the number of keys to test in a divide-and-conquer attack, at the cost of limited (practically tractable) memory requirements. It allows us to optimally enumerate key candidates from any number of (possibly redundant) lists of any size, given that the subkey information is provided as probabilities. As an illustration, we finally exhibit side-channel cryptanalysis experiments where the correct key candidate is ranked up to position 2 32 , in which our algorithm reduces the number of keys to test offline by an average factor 2 5 and a factor larger than 2 10 in the worst observed cases, compared to previous solutions. We also suggest examples of statistical attacks in which the new deterministic algorithm would allow improved results.
Abstract. In 2002, algebraic attacks using overdefined systems of equations have been proposed as a potentially very powerful cryptanalysis technique against block ciphers. However, although a number of convincing experiments have been performed against certain reduced algorithms, it is not clear wether these attacks can be successfully applied in general and to a large class of ciphers. In this paper, we show that algebraic techniques can be combined with side-channel attacks in a very effective and natural fashion. As an illustration, we apply them to the block cipher PRESENT that is a stimulating first target, due to its simple algebraic structure. The proposed attacks have a number of interesting features: (1) they exploit the information leakages of all the cipher rounds, (2) in common implementation contexts (e.g. assuming a Hamming weight leakage model), they recover the block cipher keys after the observation of a single encryption, (3) these attacks can succeed in an unknown-plaintext/ciphertext adversarial scenario and (4) they directly defeat countermeasures such as boolean masking. Eventually, we argue that algebraic side-channel attacks can take advantage of any kind of physical leakage, leading to a new tradeoff between the robustness and informativeness of the side-channel information extraction.
Abstract. Algebraic side-channel attacks have been recently introduced as a powerful cryptanalysis technique against block ciphers. These attacks represent both a target algorithm and its physical information leakages as an overdefined system of equations that the adversary tries to solve. They were first applied to PRESENT because of its simple algebraic structure. In this paper, we investigate the extent to which they can be exploited against the AES Rijndael and discuss their practical specificities. We show experimentally that most of the intuitions that hold for PRESENT can also be observed for an unprotected implementation of Rijndael in an 8-bit controller. Namely, algebraic side-channel attacks can recover the AES master key with the observation of a single encrypted plaintext and they easily deal with unknown plaintexts/ciphertexts in this context. Because these attacks can take advantage of the physical information corresponding to all the cipher rounds, they imply that one cannot trade speed for code size (or gate count) without affecting the physical security of a leaking device. In other words, more intermediate computations inevitably leads to more exploitable leakages. We analyze the consequences of this observation on two different masking schemes and discuss its impact on other countermeasures. Our results exhibit that algebraic techniques lead to a new understanding of implementation weaknesses that is different than classical side-channel attacks.
Abstract. In a recent work from Eurocrypt 2011, Renauld et al. discussed the impact of the increased variability in nanoscale CMOS devices on their evaluation against side-channel attacks. In this paper, we complement this work by analyzing an implementation of the AES S-box, in the DDSLL dual-rail logic style, using the same 65-nanometer technology. For this purpose, we first compare the performance results of the static CMOS and dual-rail S-boxes. We show that full custom design allows to nicely mitigate the performance drawbacks that are usually reported for dual-rail circuits. Next, we evaluate the side-channel leakages of these S-boxes, using both simulations and actual measurements. We take advantage of state-of-the-art evaluation tools, and discuss the quantity and nature (e.g. linearity) of the physical information they provide. Our results show that the security improvement of the DDSLL S-box is typically in the range of one order of magnitude (in terms of "number of traces to recover the key"). They also confirm the importance of a profiled information theoretic analysis for the worst-case security evaluation of leaking devices. They finally raise the important question whether dual-rail logic styles remain a promising approach for reducing the side-channel information leakages in front of technology scaling, as hardware constraints such as balanced routing may become increasingly challenging to fulfill, as circuit sizes tend towards the nanometer scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.