Measurement of tissue optical absorption and (transport) reduced scattering coefficients (mu(a) and mu(s)', respectively) is fundamental to many applications of light in medicine and biology. We report a handheld fiberoptic probe to determine these coefficients by measuring the diffuse reflectance at multiple source-collector distances, which allows for a larger dynamic range than a single source-collector separation. Diffusion theory and a priori knowledge of the spectral shape of mu(a) and mu(s)' are used in a forward model of the diffuse reflectance. The dynamic range and accuracy of this method were evaluated using Monte Carlo simulations, phantom experiments and tissues in vivo.
PACS 82.45.VpIn this study, we have demonstrated the possibility of using macroporous silicon electrodes in electrochemical capacitors. Macroporous silicon was used to increase the surface exchange between pore surface and electrolyte. The inherent resistivity of the porous silicon can be reduced through the use of subsequent doping and metallization processes of the macropore surface. A systematic study of the electrolyte concentration and the porous silicon depth influences was also performed. A unit cell capacitance value of 320 µF/cm 2 was obtained with doped and metallized p-type macroporous silicon electrodes.
The use of phantoms comprising diluted tissue homogenates with a buried capillary containing quantum dots is demonstrated as a method to investigate the optical and biophysical factors influencing the imaging of subsurface fluorescence contrast agents. Validation of the method is demonstrated using both liquid phantoms of known optical absorption and reduced scattering and Monte Carlo computer simulations of photon transport. Conclusions regarding the optimal excitation wavelength are given and quantified with respect to the tissue optical properties. The tissue homogenate method should be of value for quantitative optimization studies relevant to, for example, endoscopic imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.