King scallop contamination (Pecten maximus) by domoic acid, a neurotoxin produced by some species of the diatom Pseudo-nitzschia, is highly problematic because of its lengthy retention in the bivalve tissue, leading to prolonged fishery closures. Data collected within the French Phytoplankton and Phycotoxin monitoring network (REPHY) over the 1995-2012 period were used to characterize the seasonal dynamics and the interannual variability of P.-nitzschia spp. blooms as well as the contamination of king scallop fishing grounds, in six contrasted bays distributed along the French Atlantic coast and English Channel. Monitoring revealed that these toxic events have become more frequent since the year 2000, but with varying magnitudes, frequencies and timing depending on the bay. Two bays, located in southern Brittany, exhibited both recurrent contaminations and high P.-nitzschia abundances. The Brest bay and the Seine bay were intermittently affected. The Pertuis Breton exhibited only one major toxic event related to an exceptionally intense bloom of P.-nitzschia in 2010, and the Saint Brieuc bay neither showed significant contamination nor high P.-nitzschia abundance. While high P.-nitzschia abundance appeared to be correlated to scallop toxicity, this study highlights the difficulty in linking P.-nitzschia spp. blooms to king scallop contamination through monitoring. Indeed, P.-nitzschia was determined at the genus level and data regarding species abundances and their toxicity levels are an absolute prerequisite to further assess the environmental control of ASP events. As results describe distinct P.-nitzschia bloom dynamics along the French coast, this may suggest distinct controlling factors. They also revealed that major climatic events, such as the winter storm Xynthia in 2010, can trigger toxicity in P.-nitzschia over a large spatial scale and impact king scallop fisheries all along the coast.
The continental coastal waters of the Eastern Channel, from Normandy to Hauts-de-France, are subject to the major influence of unbalanced nutrient inputs from inflowing rivers. Several episodes of harmful algal blooms (HABs) compromising fishing and shellfish farming activities have been observed at the coast. For a better understanding of how the land-to-sea aquatic continuum functions, the GRAFS-RIVERSTRAHLER river biogeochemical model was implemented to cover the watersheds of 11 rivers flowing into this area (including the Seine) and chained with the ecological marine ECO-MARS3D model, applied to the French Northern coastal zone. Human activities strongly impact on the functioning of coastal ecosystems. Specifically, for these fertile soils of Northern France, intensive agricultural nitrogen (N) deliveries in excess over silica (Si) and phosphorus (P), essentially of diffuse origin, are potentially responsible for coastal eutrophication. Phosphorous is today equally supplied by diffuse and point sources, after a drastic reduction of inputs from wastewater treatment plants since the 2000s, and is better balanced regarding Si, as shown by the indicators of coastal eutrophication potential (P-ICEP versus N-ICEP). However, despite this drastic P reduction, HABs still appear repeatedly. Exploration of several scenarios of agro-food chain reorganization shows that (i) further progress in urban wastewater treatment to fully comply with current European regulations will not result in a significant reduction of nutrient fluxes to the sea, hence including HABs, and (ii) radical structural changes in agriculture, based on generalization of long and diversified organic crop rotations, reconnection of crop and livestock farming and changes in the human diet have the capacity to significantly reduce nutrient flows, coastal eutrophication and HABs.
BackgroundPicophytoplankton (i.e. cyanobacteria and pico-eukaryotes) are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. These micro-organisms colonized a variety of extreme environments including high salinity waters. However, the distribution of these organisms along strong salinity gradient has barely been investigated. The abundance and community structure of cyanobacteria and pico-eukaryotes were investigated along a natural continuous salinity gradient (1.8% to 15.5%) using flow cytometry.ResultsHighest picophytoplankton abundances were recorded under salinity conditions ranging between 8.0% and 11.0% (1.3 × 106 to 1.4 × 106 cells ml-1). Two populations of picocyanobacteria (likely Synechococcus and Prochlorococcus) and 5 distinct populations of pico-eukaryotes were identified along the salinity gradient. The picophytoplankton cytometric-richness decreased with salinity and the most cytometrically diversified community (4 to 7 populations) was observed in the brackish-marine part of the lagoon (i.e. salinity below 3.5%). One population of pico-eukaryote dominated the community throughout the salinity gradient and was responsible for the bloom observed between 8.0% and 11.0%. Finally only this halotolerant population and Prochlorococcus-like picocyanobacteria were identified in hypersaline waters (i.e. above 14.0%). Salinity was identified as the main factor structuring the distribution of picophytoplankton along the lagoon. However, nutritive conditions, viral lysis and microzooplankton grazing are also suggested as potentially important players in controlling the abundance and diversity of picophytoplankton along the lagoon.ConclusionsThe complex patterns described here represent the first observation of picophytoplankton dynamics along a continuous gradient where salinity increases from 1.8% to 15.5%. This result provides new insight into the distribution of pico-autotrophic organisms along strong salinity gradients and allows for a better understanding of the overall pelagic functioning in saline systems which is critical for the management of these precious and climatically-stress ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.