Purpose The purpose of this paper is to design a hybrid robust tracking controller based on an improved radial basis function artificial neural network (IRBFANN) and a novel extended-state observer for a quadrotor system with various model and parametric uncertainties and external disturbances to enhance the resiliency of the control system. Design/methodology/approach An IRBFANN is introduced as an adaptive compensator tool for model and parametric uncertainties in the control algorithm of non-singular rapid terminal sliding-mode control (NRTSMC). An exact-time extended state observer (ETESO) augmented with NRTSMC is designed to estimate the unknown exogenous disturbances and ensure fast states convergence while overcoming the singularity issue. The novelty of this work lies in the online updating of weight parameters of the RBFANN algorithm by using a new idea of incorporating an exponential sliding-mode effect, which makes a remarkable effort to make the control protocol adaptive to uncertain model parameters. A comparison of the proposed scheme with other conventional schemes shows its much better performance in the presence of parametric uncertainties and exogenous disturbances. Findings The investigated control strategy presents a robust adaptive law based on IRBFANN with a fast convergence rate and improved estimation accuracy via a novel ETESO. Practical implications To enhance the safety level and ensure stable flight operations by the quadrotor in the presence of high-order complex disturbances and uncertain environments, it is imperative to devise a robust control law. Originality/value A new idea of incorporating an exponential sliding-mode effect instead of conventional approaches in the algorithm of the RBFANN is used, which makes the control law resistant to model and parametric uncertainties. The ETESO provides rapid and accurate disturbance estimation results and updates the control law to overcome the performance degradation caused by the disturbances. Simulation results depict the effectiveness of the proposed control strategy.
PurposeThis paper aims to design an adaptive nonlinear strategy capable of timely detection and reconstruction of faults in the attitude’s sensors of an autonomous aerial vehicle with greater accuracy concerning other conventional approaches in the literature.Design/methodology/approachThe proposed scheme integrates a baseline nonlinear controller with an improved radial basis function neural network (IRBFNN) to detect different kinds of anomalies and failures that may occur in the attitude’s sensors of an autonomous aerial vehicle. An integral sliding mode concept is used as auto-tune weight update law in the IRBFNN instead of conventional weight update laws to optimize its learning capability without computational complexities. The simulations results and stability analysis validate the promising contributions of the suggested methodology over the other conventional approaches.FindingsThe performance of the proposed control algorithm is compared with the conventional radial basis function neural network (RBFNN), multi-layer perceptron neural network (MLPNN) and high gain observer (HGO) for a quadrotor vehicle suffering from various kinds of faults, e.g. abrupt, incipient and intermittent. From the simulation results obtained, it is found that the proposed algorithm’s performance in faults detection and estimation is relatively better than the rest of the methodologies.Practical implicationsFor the improvement in the stability and safety of an autonomous aerial vehicle during flight operations, quick identification and reconstruction of attitude’s sensor faults and failures always play a crucial role. Efficient fault detection and estimation scheme are considered indispensable for an error-free and safe flight mission of an autonomous aerial vehicle.Originality/valueThe proposed scheme introduces RBFNN techniques to detect and estimate the quadrotor attitude’s sensor faults and failures efficiently. An integral sliding mode effect is used as the network’s backpropagation law to automatically modify its learning parameters accordingly, thereby speeding up the learning capabilities as compared to the conventional neural network backpropagation laws. Compared with the other investigated techniques, the proposed strategy achieve remarkable results in the detection and estimation of various faults.
Cricket is the most famous game but no research work in cricket in the field of biomechanics. The aim of study was to find out the relationship of body segments angles, height of release, angle of release and average speed with deviation of ball. Eight males off spin bowlers has to bowl six legal deliveries. Descriptive statistics was used for describing the data. Pearson product moment correlation was used for the various relationship of the variable to the deviation of the ball. Angle of release (r=0.895**), average velocity (r=0.852), ankle joint left (r=.604), knee joint left (r=0.642), shoulder joint left (r=-.610) and elbow joint left (r=-.694) were significantly correlated to the deviation of the ball. Result shows that the balls bowled by bowlers with greater angle of release, on higher speeds and with extended left ankle angle were deviate more. Ball deviate more with lesser left shoulder and elbow angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.