This RCT shows that in high-risk patients, overall PPDC can be significantly reduced with hydrocortisone treatment. Inflammation may be an important mediator of PPDC.
A large number of acinar cells in the CEP increases, whereas extensive fibrosis in the CEP decreases, the risk for postoperative complications after pancreaticoduodenectomy. These results emphasize the importance of acini in the development of postoperative complications.
Objectives. Previously we have shown that a pancreas with over 40% acinar cells is exposed to postoperative pancreatitis and other complications after pancreaticoduodenectomy (PD). Our aim was to analyze the expression of NF-κB and MCP-1 in the cut edge of human pancreas after PD in both acinar-cell-rich and fibrotic pancreata. Methods. Several pancreatic samples from six patients, three with acinar-cell-rich and three with fibrotic pancreata, were exposed to surgical trauma in PD, and thereafter to hypoxemia for 15 minutes, 2–2.5 hours, 4 hours, or 6 hours, to mimic postoperative conditions of the pancreatic remnant in a patient. Immunohistochemical analysis of inflammation markers (NF-κB, MCP-1) was performed. Results. In the acinar-cell-rich pancreata, intra-acinar NF-κB and MCP-1 expression increased from mild at 15 minutes to high during the first 4 hours, whereas in ductal cells MCP-1 staining was highly intense at both time points. Acinar cell NF-κB and MCP-1 expression and ductal cell MCP-1 expression were also observed in the fibrotic pancreata, but the activation remained low throughout the 6 hours. Conclusions. In acinar-cell-rich pancreas, an extensive inflammatory cascade begins almost immediately after surgical trauma. Fibrosis may limit the progression of inflammatory process in pancreas.
Background/Objectives: Wnt/β-catenin signalling plays vital roles in tissue homeostasis. Dysregulation of the pathway has been implicated in the pathogenesis of cancer and fibroses in numerous tissues, including the pancreas. We studied the effect of microenvironmental changes pertaining to fibrotic tissue remodelling on the expression of selected Wnt/βcatenin pathway proteins in the human exocrine pancreas. The role of acinar/stellate cross-talk on the expression of the proteins was elucidated in a long-term mouse co-culture system. Methods: Expression of β-catenin, Wnt2, Wnt5a and SFRP4 was analysed immunohistochemically in normal and moderately or highly fibrotic human pancreata (n=8). The effect of humoral interactions on the expression of the proteins was studied by immunocytochemical means in parallel mono-and co-cultures of mouse acinar and stellate cells (PSCs). Results: In human pancreatic tissue, fibrotic microenvironment was associated with redistribution of the proteins in and between epithelial and stromal compartments, compared to acinar-rich tissue. In non-fibrotic and moderately fibrotic tissue the proteins appeared only in acinar cells whereas in highly fibrotic tissue stromal fibroblastoid/stellate cells and macrophages were their predominant locations. Subcellular changes in the expression of β-catenin and Wnt5a were detected. Our in vitro data suggest potential involvement of acinar cell/PSC cross-talk in mediating the changes observed in tissue specimens. Conclusions: Wnt/β-catenin pathway-associated proteins are abundantly expressed in the exocrine pancreas with prominent changes in their cellular and subcellular expression patterns along with increasing levels of fibrosis. Diverse functions for Wnt/ β-catenin signalling during the course of fibrotic remodelling in the exocrine pancreas are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.