Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.
SUMMARYGenome-wide association studies rely upon segregating natural genetic variation, particularly the patterns of polymorphism and correlation between adjacent markers. To facilitate association studies in the model legume Medicago truncatula, we present a genome-scale polymorphism scan using existing Affymetrix microarrays. We develop and validate a method that uses a simple information-criteria algorithm to call polymorphism from microarray data without reliance on a reference genotype. We genotype 12 inbred M. truncatula lines sampled from four wild Tunisian populations and find polymorphisms at approximately 7% of features, comprising 31 419 probes. Only approximately 3% of these markers assort by population, and of these only 10% differentiate between populations from saline and non-saline sites. Fifty-two differentiated probes with unique genome locations correspond to 18 distinct genome regions. Sanger resequencing was used to characterize a subset of maker loci and develop a single nucleotide polymorphism (SNP)-typing assay that confirmed marker assortment by habitat in an independent sample of 33 individuals from the four populations. Genome-wide linkage disequilibrium (LD) extends on average for approximately 10 kb, falling to background levels by approximately 500 kb. A similar range of LD decay was observed in the 18 genome regions that assort by habitat; these LD blocks delimit candidate genes for local adaptation, many of which encode proteins with predicted functions in abiotic stress tolerance and are targets for functional genomic studies. Tunisian M. truncatula populations contain substantial amounts of genetic variation that is structured in relatively small LD blocks, suggesting a history of migration and recombination. These populations provide a strong resource for genome-wide association studies.
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.