Cover-incomparability graphs (C-I graphs, for short) are introduced, whose edge-set is the union of edge-sets of the incomparability and the cover graph of a poset. Posets whose C-I graphs are chordal (resp. distance-hereditary, Ptolemaic) are characterized in terms of forbidden isometric subposets, and a general approach for studying C-I graphs is proposed. Several open problems are also stated.
The game chromatic number $\chi _{g}$ is considered for the Cartesian product $G\,\square \,H$ of two graphs $G$ and $H$. Exact values of $\chi _{g}(K_2\square H)$ are determined when $H$ is a path, a cycle, or a complete graph. By using a newly introduced "game of combinations" we show that the game chromatic number is not bounded in the class of Cartesian products of two complete bipartite graphs. This result implies that the game chromatic number $\chi_{g}(G\square H)$ is not bounded from above by a function of game chromatic numbers of graphs $G$ and $H$. An analogous result is derived for the game coloring number of the Cartesian product of graphs.
In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpiński graphs. We compute the minimum size of such codes in Sierpiński graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.