Wheat (Tritium aestivum) is vulnerable to future climate change because it is predominantly grown under rain-fed conditions in drought-prone areas. Thus, in-depth understanding of drought effect on wheat metabolism is essential for developing drought-tolerant wheat varieties. Here, we exposed wheat ‘Norin 61’ plants to progressive drought stress [0 (before drought), 2, 4, 6, 8, and 10 days after withholding water] during the flowering stage to investigate physiological and metabolomic responses. Transcriptional analyses of key abscisic acid-responsive genes indicated that abscisic acid signalling played a major role in the adaptation of wheat to water deficit. Carbon isotope composition had a higher value than the control while canopy temperature (CT) increased under drought stress. The CT depression was tightly correlated with soil water potential (SWP). Additionally, SWP at − 517 kPa was identified as the critical point for increasing CT and inducing reactive oxygen species. Metabolome analysis identified four potential drought-responsive biomarkers, the enhancement of nitrogen recycling through purine and pyrimidine metabolism, drought-induced senescence based on 1-aminocyclopropane-1-carboxylic acid and Asn accumulation, and an anti-senescence response through serotonin accumulation under severe drought stress. Our findings provide in-depth insight into molecular, physiological and metabolite changes involved in drought response which are useful for wheat breeding programs to develop drought-tolerant wheat varieties.
Bread wheat (Triticum aestivum) is less adaptable to high temperatures than other major cereals. Previous studies of the effects of high temperature on wheat focused on the reproductive stage. There are few reports on yield after high temperatures at other growth stages. Understanding growth-stage-specific responses to heat stress will contribute to the development of tolerant lines suited to high temperatures at various stages. We exposed wheat cultivar “Norin 61” to high temperature at three growth stages: seedling–tillering (GS1), tillering–flowering (GS2), and flowering–maturity (GS3). We compared each condition based on agronomical traits, seed maturity, and photosynthesis results. Heat at GS2 reduced plant height and number of grains, and heat at GS3 reduced the grain formation period and grain weight. However, heat at GS1 reduced senescence and prolonged grain formation, increasing grain weight without reducing yield. These data provide fundamental insights into the biochemical and molecular adaptations of bread wheat to high-temperature stresses and have implications for the development of wheat lines that can respond to high temperatures at various times of the year.
Our previous study described stage-specific responses of ‘Norin 61’ bread wheat to high temperatures from seedling to tillering (GS1), tillering to flowering (GS2), flowering to full maturity stage (GS3), and seedling to full maturity stage (GS1–3). The grain development phase lengthened in GS1 plants; source tissue decreased in GS2 plants; rapid senescence occurred in GS3 plants; all these effects occurred in GS1–3 plants. The present study quantified 69 flag leaf metabolites during early grain development to reveal the effects of stage-specific high-temperature stress and identify markers that predict grain weight. Heat stresses during GS2 and GS3 showed the largest shifts in metabolite contents compared with the control, followed by GS1–3 and GS1. The GS3 plants accumulated nucleosides related to the nucleotide salvage pathway, beta-alanine, and serotonin. Accumulation of these compounds in GS1 plants was significantly lower than in the control, suggesting that the reduction related to the high-temperature priming effect observed in the phenotype (i.e., inhibition of senescence). The GS2 plants accumulated a large quantity of free amino acids, indicating residual effects of the previous high-temperature treatment and recovery from stress. However, levels in GS1–3 plants tended to be close to those in the control, indicating an acclimation response. Beta-alanine, serotonin, tryptophan, proline, and putrescine are potential molecular markers that predict grain weight due to their correlation with agronomic traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.