Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities.
High-fidelity vehicle trajectory data is becoming increasingly important in traffic modeling, especially to capture dynamic features such as stop-and-go waves. This article presents data collected in a series of eight experiments on a circular track with human drivers. The data contains smooth flowing and stop-and-go traffic conditions. The vehicle trajectories presented in this article are collected using a panoramic 360degree camera, and fuel rate data is recorded via an on-board diagnostics scanner installed in each vehicle. The video data from the 360-degree camera is processed with an offline unsupervised algorithm to extract vehicle trajectories from experimental data. The trajectories are highly accurate, with a mean positional bias of less than 0.01 m and a standard deviation of 0.11 m. The velocities are also validated to be highly accurate with a bias of 0.02 m/s and standard deviation of 0.09 m/s. The source code and data used in this article are published with this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.