Preliminary studies of used fuel generated in the US Department of Energy's Advanced Fuel Cycle Initiative have indicated that current used fuel transport casks may be insufficient for the transportation of said fuel. This work considers transport of three 5-year-cooled oxide advanced burner reactor used fuel assemblies with a burn-up of 160 MWD kg 21 . A transport cask designed to carry these assemblies is proposed. This design employs a 7-cm-thick lead gamma shield and a 20-cm-thick NS-4-FR composite neutron shield. The temperature profile within the cask, from its centre to its exterior surface, is determined by two-dimensional computational fluid dynamics simulations of conduction, convection and radiation within the cask. Simulations are performed for a cask with a smooth external surface and various neutron shield thicknesses. Separate simulations are performed for a cask with a corrugated external surface and a neutron shield thickness that satisfies shielding constraints. Resulting temperature profiles indicate that a threeassembly cask with a smooth external surface will meet fuel cladding temperature requirements but will cause outer surface temperatures to exceed the regulatory limit. A cask with a corrugated external surface will not exceed the limits for both the fuel cladding and outer surface temperatures.
May 2-6, 2016 United States Nuclear Regulatory Commission DISCLAIMER NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, or any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.
Preliminary studies of used fuel generated in the US Department of Energy’s Advanced Fuel Cycle Initiative have indicated that current used fuel transport casks may be insufficient for the transportation of said fuel. This work considers transport of three 5-year-cooled oxide Advanced Burner Reactor used fuel assemblies with a burn-up of 160 MWD/kg. A transport cask designed to carry these assemblies is proposed. This design employs a 7-cm-thick lead gamma shield and a 20-cm-thick NS-4-FR composite neutron shield. The temperature profile within the cask, from its center to its exterior surface, is determined by two dimensional computational fluid dynamics simulations of conduction, convection, and radiation within the cask. Simulations are performed for a cask with a smooth external surface and various neutron shield thicknesses. Separate simulations are performed for a cask with a corrugated external surface and a neutron shield thickness that satisfies shielding constraints. Resulting temperature profiles indicate that a three-assembly cask with a smooth external surface will meet fuel cladding temperature requirements but will cause outer surface temperatures to exceed the regulatory limit. A cask with a corrugated external surface will not exceed the limits for both the fuel cladding and outer surface temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.