A gate buffer fabricated in a 2-μm 4H silicon carbide (SiC) process is presented. The circuit is composed of an input buffer stage with a push-pull output stage, and is fabricated using enhancement mode N-channel FETs in a process optimized for SiC power switching devices. Simulation and measurement results of the fabricated gate buffer are presented and compared for operation at various voltage supply levels, with a capacitive load of 2 nF. Details of the design including layout specifics, simulation results, and directions for future improvement of this buffer are presented. In addition, plans for its incorporation into an isolated high-side/low-side gate-driver architecture, fully integrated with power switching devices in a SiC process, are briefly discussed. This letter represents the first reported MOSFET-based gate buffer fabricated in 4H SiC.Index Terms-Gate buffer, gate driver, high-temperature electronics, silicon carbide (SiC), 4H-SiC.
Key parameters for any bistable device are operating voltage and temperature range. The development of liquid crystal mixtures for use with grating aligned Zenithal Bistable Displays (ZBD™) is described for the first time. Latching at voltages less than 5V, with 20V addressing faster than 80μs per line and operation over a temperature range from −20°C to 80°C are all demonstrated in the same 4μm device.
This paper presents the testing results of an allsilicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The hightemperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes highfrequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter's switching frequency was then increased to 500 kHz to prove the high-frequency capability of the power module. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.