Results of a literature survey indicate that weed population density and biomass production may be markedly reduced using crop rotation (temporal diversification) and intercropping (spatial diversification) strategies. Crop rotation resulted in emerged weed densities in test crops that were lower in 21 cases, higher in 1 case, and equivalent in 5 cases in comparison to monoculture systems. In 12 cases where weed seed density was reported, seed density in crop rotation was lower in 9 cases and equivalent in 3 cases when compared to monocultures of the component crops. In intercropping systems where a main crop was intersown with a "smother" crop species, weed biomass in the intercrop was lower in 47 cases and higher in 4 cases than in the main crop grown alone (as a sole crop); a variable response was observed in 3 cases. When intercrops were composed of two or more main crops, weed biomass in the intercrop was lower than in all of the component sole crops in 12 cases, intermediate between component sole crops in 10 cases, and higher than all sole crops in 2 cases. It is unclear why crop rotation studies have focused on weed density, whereas intercropping studies have focused on weed biomass. The success of rotation systems for weed suppression appears to be based on the use of crop sequences that create varying patterns of resource competition, allelopathic interference, soil disturbance, and mechanical damage to provide an unstable and frequently inhospitable environment that prevents the proliferation of a particular weed species. The relative importance and most effective combinations of these weed control tactics have not been adequately assessed. In addition, the weed-suppressive effects of other related factors, such as manipulation of soil fertility dynamics in rotation sequences, need to be examined. Intercrops may demonstrate weed control advantages over sole crops in two ways. First, greater crop yield and less weed growth may be achieved if intercrops are more effective than sole crops in usurping resources from weeds or suppressing weed growth through allelopathy. Alternatively, intercrops may provide yield advantages without suppressing weed growth below levels observed in component sole crops if intercrops use resources that are not exploitable by weeds or convert resources to harvestable material more efficiently than sole crops. Because of the difficulty of monitoring the use of multiple resources by intercrop/weed mixtures throughout the growing season, identification of specific mechanisms of weed suppression and yield enhancement in intercrop systems has so far proven elusive. Significant advances in the design and improvement of weed-suppressive crop rotation and intercropping systems are most likely to occur if three important areas of research are addressed. First, there must be continued attention to the study of weed population dynamics and crop-weed interference in crop rotation and intercropping systems. More information is needed concerning the effects of diversification of cropping sys...
Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.
SummaryGreater adoption and re®nement of low-external-input (LEI) farming systems have been proposed as ways to ameliorate economic, environmental and health problems associated with conventional farming systems. Organic soil amendments and crop diversi®cation are basic components of LEI systems. Weed scientists can improve the use of these practices for weed management by improving knowledge of four relevant ecological mechanisms. First, multispecies crop rotations, intercrops and cover crops may reduce opportunities for weed growth and regeneration through resource competition and niche disruption. Secondly, weed species appear to be more susceptible to phytotoxic eects of crop residues and other organic soil amendments than crop species, possibly because of dierences in seed mass. Thirdly, delayed patterns of N availability in LEI systems may favour large-seeded crops over small-seeded weeds. Finally, additions of organic materials can change the incidence and severity of soil-borne diseases aecting weeds and crops. Our research on LEI sweetcorn and potato production systems in central and northern Maine (USA) suggests that these mechanisms can reduce weed density and growth while maintaining crop yields. Low-external-input farming systems will advance most quickly through the application of interdisciplinary research focused on these and other ecological mechanisms.
Enhancing biodiversity in cropping systems is suggested to promote ecosystem services, thereby reducing dependency on agronomic inputs while maintaining high crop yields. We assess the impact of several diversification practices in cropping systems on above- and belowground biodiversity and ecosystem services by reviewing 98 meta-analyses and performing a second-order meta-analysis based on 5160 original studies comprising 41,946 comparisons between diversified and simplified practices. Overall, diversification enhances biodiversity, pollination, pest control, nutrient cycling, soil fertility, and water regulation without compromising crop yields. Practices targeting aboveground biodiversity boosted pest control and water regulation, while those targeting belowground biodiversity enhanced nutrient cycling, soil fertility, and water regulation. Most often, diversification practices resulted in win-win support of services and crop yields. Variability in responses and occurrence of trade-offs highlight the context dependency of outcomes. Widespread adoption of diversification practices shows promise to contribute to biodiversity conservation and food security from local to global scales.
Summary1. Recent studies have revealed many potential benefits of increasing plant diversity in natural ecosystems, as well as in agroecosystems and production forests. Plant diversity potentially provides a partial to complete substitute for many costly agricultural inputs, such as fertilizers, pesticides, imported pollinators and irrigation. Diversification strategies include enhancing crop genetic diversity, mixed plantings, rotating crops, agroforestry and diversifying landscapes surrounding croplands. 2. Here we briefly review studies considering how increasing plant diversity influences the production of crops, forage, and wood, yield stability, and several regulating and supporting agroecosystem services. We also discuss challenges and recommendations for diversifying agroecosystems. 3. There is consistently strong evidence that strategically increasing plant diversity increases crop and forage yield, wood production, yield stability, pollinators, weed suppression and pest suppression, whereas effects of diversification on soil nutrients and carbon remain poorly understood. 4. Synthesis. The benefits of diversifying agroecosystems are expected to be greatest where the aims are to sustainably intensify production while reducing conventional inputs or to optimize both yields and ecosystem services. Over the next few decades, as monoculture yields continue to decelerate or decline for many crops, and as demand for ecosystem services continues to rise, diversification could become an essential tool for sustaining production and ecosystem services in croplands, rangelands and production forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.