Results of a literature survey indicate that weed population density and biomass production may be markedly reduced using crop rotation (temporal diversification) and intercropping (spatial diversification) strategies. Crop rotation resulted in emerged weed densities in test crops that were lower in 21 cases, higher in 1 case, and equivalent in 5 cases in comparison to monoculture systems. In 12 cases where weed seed density was reported, seed density in crop rotation was lower in 9 cases and equivalent in 3 cases when compared to monocultures of the component crops. In intercropping systems where a main crop was intersown with a "smother" crop species, weed biomass in the intercrop was lower in 47 cases and higher in 4 cases than in the main crop grown alone (as a sole crop); a variable response was observed in 3 cases. When intercrops were composed of two or more main crops, weed biomass in the intercrop was lower than in all of the component sole crops in 12 cases, intermediate between component sole crops in 10 cases, and higher than all sole crops in 2 cases. It is unclear why crop rotation studies have focused on weed density, whereas intercropping studies have focused on weed biomass. The success of rotation systems for weed suppression appears to be based on the use of crop sequences that create varying patterns of resource competition, allelopathic interference, soil disturbance, and mechanical damage to provide an unstable and frequently inhospitable environment that prevents the proliferation of a particular weed species. The relative importance and most effective combinations of these weed control tactics have not been adequately assessed. In addition, the weed-suppressive effects of other related factors, such as manipulation of soil fertility dynamics in rotation sequences, need to be examined. Intercrops may demonstrate weed control advantages over sole crops in two ways. First, greater crop yield and less weed growth may be achieved if intercrops are more effective than sole crops in usurping resources from weeds or suppressing weed growth through allelopathy. Alternatively, intercrops may provide yield advantages without suppressing weed growth below levels observed in component sole crops if intercrops use resources that are not exploitable by weeds or convert resources to harvestable material more efficiently than sole crops. Because of the difficulty of monitoring the use of multiple resources by intercrop/weed mixtures throughout the growing season, identification of specific mechanisms of weed suppression and yield enhancement in intercrop systems has so far proven elusive. Significant advances in the design and improvement of weed-suppressive crop rotation and intercropping systems are most likely to occur if three important areas of research are addressed. First, there must be continued attention to the study of weed population dynamics and crop-weed interference in crop rotation and intercropping systems. More information is needed concerning the effects of diversification of cropping sys...
Microbiological analyses of fresh fruits and vegetables produced by organic and conventional farmers in Minnesota were conducted to determine the coliform count and the prevalence of Escherichia coli, Salmonella, and E. coli O157:H7. A total of 476 and 129 produce samples were collected from 32 organic and 8 conventional farms, respectively. The samples included tomatoes, leafy greens, lettuce, green peppers, cabbage, cucumbers, broccoli, strawberries, apples, and seven other types of produce. The numbers of fruits and vegetables was influenced by their availability at participating farms and varied from 11 strawberry samples to 108 tomato samples. Among the organic farms, eight were certified by accredited agencies and the rest reported the use of organic practices. All organic farms used aged or composted animal manure as fertilizer. The average coliform counts in both organic and conventional produce were 2.9 log most probable number per g. The percentages of E. coli-positive samples in conventional and organic produce were 1.6 and 9.7%, respectively. However, the E. coli prevalence in certified organic produce was 4.3%, a level not statistically different from that in conventional samples. Organic lettuce had the largest prevalence of E. coli (22.4%) compared with other produce types. Organic samples from farms that used manure or compost aged less than 12 months had a prevalence of E. coli 19 times greater than that of farms that used older materials. Serotype O157:H7 was not detected in any produce samples, but Salmonella was isolated from one organic lettuce and one organic green pepper. These results provide the first microbiological assessment of organic fruits and vegetables at the farm level.
Previous experiments have shown that crimson clover (Trifolium incarnatum L.) used as a green manure may supply weed control benefits as well as nitrogen (N) to a subsequent crop of corn (Zea mays L.). In contrast to use of synthetic N fertilizer, use of fresh, incorporated crimson clover residue as an N source has been found to suppress lambsquarters (Chenopodium album L.) aboveground drymatter accumulation but to only temporarily reduce that of sweet corn. One possible cause of the clover's suppressive effect is the initial low availability of N that may occur after residue incorporation in the soil. A factorial treatment combination of +/-crimson clover residue and four rates of N fertilizer was used in two field experiments to further document the clover's influence on early plant growth and development and to test the hypothesis that low initial N availability is responsible for the clover's previously observed suppressive effects. The presence of crimson clover residue was found to reduce total emergence of lambsquarters by 27%, while application of N fertilizer increased lambsquarters emergence by almost 75%. Lambsquarters emergence was also delayed by the residue treatment. Addition of N did not alleviate the clover's suppressive effect on total emergence or emergence rate of lambsquarters. Sweet corn emergence and emergence rate differed by less than 5% in 0 N/+residue and 0 N/-residue treatments. Applications of N to residue plots suppressed rather than enanced sweet corn emergence. Lambsquarters aboveground biomass accumulation was 46% lower in the residue than nouresidue treatments at 23 days after planting (DAP) and remained 26% lower at 53 DAP. Addition of N did not alleviate the suppressive effect of the clover residue on lambsquarters aboveground drymatter accumulation. Sweet corn aboveground biomass accumulation was not affected by the presence of the clover residue. The results of the experiments indicate that the suppressive effect of crimson clover residue on lambsquarters emergence and growth is not attributable to initial low availability of N. However, given the stimulatory effect of N fertilizer on lambsquarters development, use of crimson clover as an N source would appear to provide weed control benefits both as a direct suppressant of weed emergence and growth and as a substitute for fertilizer N.
Identifying varieties best suited to local food systems requires a comprehensive understanding of varietal performance from field to fork. After conducting four years of field trials to test which varieties of ancient, heritage, and modern wheat grow best on organically managed land, we screened a subset of varieties for bread, pastry, pasta, and cooked grain quality. The varieties evaluated were three lines of emmer (T. turgidum L. ssp. dicoccum Schrank ex Schübl) and eleven lines of common wheat (Triticum aestivum L.), including two modern soft wheat varieties, four soft heritage wheat varieties, four hard modern wheat varieties, and one hard heritage wheat variety. A diverse group of bakers, chefs, researchers, and consumers compared varieties for qualities of interest to regional markets. Participants assessed differences in sensory profiles, pasta making ability, and baking quality for sourdough, matzah crackers, yeast bread, and shortbread cookies. In addition to detecting significant differences among varieties for pasta, sourdough, and pastry quality, participants documented variation in texture and flavor for the evaluated products. By demonstrating which varieties perform best in the field, in the bakery, and on our taste buds, these results can support recommendations that strengthen the revival of local grain economies. Schrank ex Schubl). The baking quality of heritage wheat varieties, however, are poorly documented. Moreover, few scientific studies have compared the sensory attributes of different varieties of heritage, ancient, and modern wheat. Vindras-Fouillet et al. (2014) found significant differences in artisanal baking and sensory quality among eight farmer-selected wheat populations and one modern variety in France. Similarly, four varieties demonstrated different texture and appearance when baked into wholemeal bread in Germany (Ploeger et al., 2008). Starr et al. (2013) also documented significant differences in texture, appearance, aroma, and flavor of cooked grain from 20 wheat varieties grown in Northern Europe. None of the varieties assessed in these studies, however, are commonly grown in the United States. To inform local markets of the United States, this study compared varieties of organically grown heritage, modern, and ancient wheat for whole-grain technical parameters, artisanal bread baking, pasta making, pastry quality, and sensory attributes. Materials and methods Field methodsTo identify varieties that may be best suited to organic production in the northeastern and northcentral United States, we evaluated 40 winter wheat, 24 spring wheat, and 16 spring emmer entries over four years (2012)(2013)(2014)(2015) at three organically certified locations in Willsboro, NY, Freeville, NY, and Rock Springs, PA. Spring wheat and emmer entries were also tested on certified organic acreage in Carrington, ND. All entries were replicated three times and plot sizes varied from 3.78 to 8.91 square meters, depending on location.Agronomic results of these variety trials are published elsewhere...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.