There is a need in electronic systems and pulsed power applications for capacitors with high energy density. From a material standpoint, capacitive energy density improves with increasing dielectric constant and/or breakdown strength. Current state-of-the-art polymeric capacitors are, however, limited in that their dielectric constant is low (2–4). Our approach to improve polymer film capacitors is to combine, through microlayer coextrusion, two polymers with complementary properties: one with a high breakdown strength (polycarbonate) and one with a high dielectric constant (polyvinylidene fluoride-hexafluoropropylene). As opposed to the monolith controls, multilayered films with various numbers of layers and compositions subjected to a pulsed voltage exhibit treeing patterns that hinder the breakdown process. Consequently, substantially enhanced breakdown strengths are measured in the mutilayered films. It is further shown, by varying the overall film thickness, that the charge at the tip of the needle electrode is a key parameter that controls treeing. Based on the acquired data, a breakdown mechanism is formulated to explain the increased dielectric strengths. Using the understanding gained from these systems, selection and optimization of future layered structures can be carried out to obtain additional property enhancements.
The effect of introducing a multilayer microstructure on the dielectric properties of polymer materials is evaluated in 32- and 256-layer films with alternating polycarbonate (PC) and polyvinylidene-hexafluoropropylene (coPVDF) layers. The permittivity, dielectric loss, dielectric strength, and energy density were measured as a function of the relative PC/coPVDF volume concentrations. The permittivity follows an effective medium model while the dielectric strength was typically higher than that predicted by a volume fraction based weighted average of the components. Energy densities as high as ∼14J∕cm3, about 60% greater than that of the component polymers, are measured for 50% PC/50% coPVDF films.
Layer‐multiplying coextrusion was used in conjunction with isothermal recrystallization to study the confined crystallization of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride‐tetrafluoroethylene (PVDF‐TFE) using polycarbonate (PC) and polysulfone (PSF) as confining materials. Three layered systems were produced (PC/PVDF, PSF/PVDF, and PC/PVDF‐TFE) with layer thicknesses ranging from 525 to 28 nm. The crystal morphology was affected by both layer thickness and recrystallization temperature. Specifically, increased recrystallization temperature and decreased layer thickness facilitated the formation of high aspect ratio in‐plane crystals in both PVDF based polymers. On the other side of the spectrum, thicker layers and lower recrystallization temperatures produced on‐edge PVDF crystals and isotropic PVDF‐TFE crystals. The morphology was correlated with oxygen permeability, which decreased by almost two orders of magnitude compared with the bulk. A variety of crystal structures were obtained and explained with nucleation and diffusion theory. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011
ABSTRACT:The dielectric strength and energy storage capability of poly(vinylidene fluoride-hexafluoropropylene) copolymer (P[VDF-HFP]) films are enhanced by interleaving layers of PVDF copolymer with thin layers of polycarbonate (PC). To gain insight into the breakdown processes in such materials, focused ion beam (FIB) milling in conjunction with scanning electron microscopy (SEM) was used to study the effect of a breakdown on the film. FIB can sequentially mill cross sections that are each imaged by SEM. The technique can provide quasi-3D images across the film and give a detailed view of the damage caused by an electrical breakdown. Here, breakdowns initiated using a needle-plane electrode configuration were imaged. In homogeneous films, the damage was confined to the small volume at the pinhole site.In 32-layer 50/50 PC/P[VDF-HFP] multilayer films, damage extending laterally up to $ 15 lm into the film along the layer interfaces was seen. In addition to the delamination, layer buckling and distortion were apparent. The damage varied with the sample orientation, but the images indicate that the interfaces play an important role in the breakdown. They suggest that modifying the interface properties can be a strategy to further improve the dielectric strength of multilayer polymer dielectric materials.
The dielectric lifetime and corresponding damage morphology of polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) (PC/P(VDF-HFP)) layered systems are studied under constant direct current (DC) field. Melt blends of the two polymers are also considered for comparison. The dielectric lifetimes of the latter are systematically much shorter than the layered systems. The interfaces between the polymers act as flaws that induce up to two orders of magnitude difference between the layered and blend systems. The capacitance values versus time during breakdown progression exhibit an inversed S-shape pattern. The three regimes in the S-shape pattern are consecutively attributed to randomly isolated break-downs, interconnecting breakdowns, and wearing-out of the capacitor film. The film breakdown images during dielectric lifetime test confirmed the transition from randomly isolated breakdowns to interconnecting breakdowns. This transition was further evidenced by a bimodal distribution in the Weibull analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.