Abstract. We present TinyOS, a flexible, application-specific operating system for sensor networks, which form a core component of ambient intelligence systems. Sensor networks consist of (potentially) thousands of tiny, low-power nodes, each of which execute concurrent, reactive programs that must operate with severe memory and power constraints. The sensor network challenges of limited resources, event-centric concurrent applications, and low-power operation drive the design of TinyOS. Our solution combines flexible, fine-grain components with an execution model that supports complex yet safe concurrent operations. TinyOS meets these challenges well and has become the platform of choice for sensor network research; it is in use by over a hundred groups worldwide, and supports a broad range of applications and research topics. We provide a qualitative and quantitative evaluation of the system, showing that it supports complex, concurrent programs with very low memory requirements (many applications fit within 16KB of memory, and the core OS is 400 bytes) and efficient, low-power operation. We present our experiences with TinyOS as a platform for sensor network innovation and applications.
Augmenting heavy and power-hungry data collection equipment with lighter, smaller wireless sensor network nodes leads to faster, larger deployments. Arrays comprising dozens of wireless sensor nodes are now possible, allowing scientific studies that aren't feasible with traditional instrumentation. Designing sensor networks to support volcanic studies requires addressing the high data rates and high data fidelity these studies demand. The authors' sensor-network application for volcanic data collection relies on triggered event detection and reliable data retrieval to meet bandwidth and data-quality demands.
Due to the dynamic nature of WAHN communications and the multi-node involvement in most WAHN applications, group key management has been proposed for efficient support of secure communications in WAHNs. Exclusion Basis Systems (EBS) provide a framework for scalable and efficient group key management where the number of keys per node and the number of re-key messages can be relatively adjusted. EBS-based solutions, however, may suffer from collusion attacks, where a number of nodes may collaborate to reveal all system keys and consequently capture the network. In this paper we investigate the collusion problem in EBS and demonstrate that a careful assignment of keys to nodes reduces collusion. Since an optimal assignment is NP hard, we propose a location-based heuristic where keys are assigned to neighboring nodes depending on the hamming distance between the strings of bits representing the used subset of the keys employed in the system. Simulation results have demonstrated that our proposed solution significantly boosts the network resilience to potential collusion threats.
This paper presents the results of a pilot study to assess the feasibility of using accelerometer data to estimate the severity of symptoms and motor complications in patients with Parkinson’s disease. A Support Vector Machine (SVM) classifier was implemented to estimate the severity of tremor, bradykinesia and dyskinesia from accelerometer data features. SVM-based estimates were compared with clinical scores derived via visual inspection of video recordings taken while patients performed a series of standardized motor tasks. The analysis of the video recordings was performed by clinicians trained in the use of scales for the assessment of the severity of Parkinsonian symptoms and motor complications. Results derived from the accelerometer time series were analyzed to assess the effect on the estimation of clinical scores of the duration of the window utilized to derive segments (to eventually compute data features) from the accelerometer data, the use of different support vector machine kernels and misclassification cost values, and the use of data features derived from different motor tasks. Results were also analyzed to assess which combinations of data features carried enough information to reliably assess the severity of symptoms and motor complications. Combinations of data features were compared taking into consideration the computational cost associated with estimating each data feature on the nodes of a body sensor network and the effect of using such data features on the reliability of SVM-based estimates of the severity of Parkinsonian symptoms and motor complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.