Augmenting heavy and power-hungry data collection equipment with lighter, smaller wireless sensor network nodes leads to faster, larger deployments. Arrays comprising dozens of wireless sensor nodes are now possible, allowing scientific studies that aren't feasible with traditional instrumentation. Designing sensor networks to support volcanic studies requires addressing the high data rates and high data fidelity these studies demand. The authors' sensor-network application for volcanic data collection relies on triggered event detection and reliable data retrieval to meet bandwidth and data-quality demands.
This paper presents the results of a pilot study to assess the feasibility of using accelerometer data to estimate the severity of symptoms and motor complications in patients with Parkinson’s disease. A Support Vector Machine (SVM) classifier was implemented to estimate the severity of tremor, bradykinesia and dyskinesia from accelerometer data features. SVM-based estimates were compared with clinical scores derived via visual inspection of video recordings taken while patients performed a series of standardized motor tasks. The analysis of the video recordings was performed by clinicians trained in the use of scales for the assessment of the severity of Parkinsonian symptoms and motor complications. Results derived from the accelerometer time series were analyzed to assess the effect on the estimation of clinical scores of the duration of the window utilized to derive segments (to eventually compute data features) from the accelerometer data, the use of different support vector machine kernels and misclassification cost values, and the use of data features derived from different motor tasks. Results were also analyzed to assess which combinations of data features carried enough information to reliably assess the severity of symptoms and motor complications. Combinations of data features were compared taking into consideration the computational cost associated with estimating each data feature on the nodes of a body sensor network and the effect of using such data features on the reliability of SVM-based estimates of the severity of Parkinsonian symptoms and motor complications.
Abstract. In this paper, we present a robust, decentralized approach to RF-based location tracking. Our system, called MoteTrack, is based on low-power radio transceivers coupled with a modest amount of computation and storage capabilities. MoteTrack does not rely upon any back-end server or network infrastructure: the location of each mobile node is computed using a received radio signal strength signature from numerous beacon nodes to a database of signatures that is replicated across the beacon nodes themselves. This design allows the system to function despite significant failures of the radio beacon infrastructure. In our deployment of MoteTrack, consisting of 20 beacon nodes distributed across our Computer Science building, we achieve a 50 th percentile and 80 th percentile location-tracking accuracy of 2 meters and 3 meters respectively. In addition, MoteTrack can tolerate the failure of up to 60% of the beacon nodes without severely degrading accuracy, making the system suitable for deployment in highly volatile conditions. We present a detailed analysis of MoteTrack's performance under a wide range of conditions, including variance in the number of obstructions, beacon node failure, radio signature perturbations, receiver sensitivity, and beacon node density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.