The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.
This paper presents the results of a pilot study to assess the feasibility of using accelerometer data to estimate the severity of symptoms and motor complications in patients with Parkinson’s disease. A Support Vector Machine (SVM) classifier was implemented to estimate the severity of tremor, bradykinesia and dyskinesia from accelerometer data features. SVM-based estimates were compared with clinical scores derived via visual inspection of video recordings taken while patients performed a series of standardized motor tasks. The analysis of the video recordings was performed by clinicians trained in the use of scales for the assessment of the severity of Parkinsonian symptoms and motor complications. Results derived from the accelerometer time series were analyzed to assess the effect on the estimation of clinical scores of the duration of the window utilized to derive segments (to eventually compute data features) from the accelerometer data, the use of different support vector machine kernels and misclassification cost values, and the use of data features derived from different motor tasks. Results were also analyzed to assess which combinations of data features carried enough information to reliably assess the severity of symptoms and motor complications. Combinations of data features were compared taking into consideration the computational cost associated with estimating each data feature on the nodes of a body sensor network and the effect of using such data features on the reliability of SVM-based estimates of the severity of Parkinsonian symptoms and motor complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.