In poultry production, gut microbiota (GM) plays a pivotal role and influences different host functions related to the efficiency of production performances. Antimicrobial (AM) use is one of the main factors affecting GM composition and functions. Although several studies have focused their attention on the role of AMs as growth promoters in the modulation of GM in broilers, the consequences of higher AM concentrations administered during prophylactic treatments need to be better elucidated. For this purpose, 16S rRNA gene sequencing was performed to evaluate the impact of different prophylactic AM protocols on the composition and diversity of the broiler GM. Diversity analysis has shown that AM treatment significantly affects alpha diversity in ileum and beta diversity in both ileum and caecum. In ileal samples, the Enterobacteriaceae family has been shown to be particularly affected by AM treatments. AMs have been demonstrated to affect GM composition in broiler. These findings indicate that withdrawal periods were not enough for the restoral of the original GM. Further studies are needed for a better elucidation of the negative effects caused by an altered GM in broilers.
In recent years, antimicrobial (AM) use in poultry farming has been attracting attention worldwide mainly due to AM resistance spreading. The role of AM prophylaxis in the modulation of gut microbiota, as well as of gut health, is still not clearly understood. Therefore, this study aimed to investigate the role of different prophylaxis protocols in the modulation of the gut barrier in broilers by applying a histopathological approach. Intestinal tissue samples were collected from a total of 240 male broilers (Ross 306), reared and treated with different AM protocols. Haematoxylin and Eosin (HE) staining and a multiple scoring system were used to evaluate the presence of lesions in ileum, cecum and colon of treated broilers. Moreover, immunohistochemistry (IHC) was performed to assess the expression of claudin-3 and ZO-1 proteins in intestinal tissues. The application of a semi-quantitative scoring system was used in IHC stained samples. HE results revealed that intestinal tissues were mainly characterized by epithelial detachment and fusion of the intestinal villi, but also by the presence of lymphocytic infiltrate in the mucosa and submucosa of AM-treated broilers. However, the IHC approach for the evaluation of claudin-3 and ZO-1 proteins showed that their expression was not affected by the different AM treatments. Nevertheless, the presence of intestinal lesions highlighted by histopathology suggests that AM treatments could harm the gut health of broilers, inducing an inflammatory response and consequent epithelial lesions. In order to clarify the role of AM treatments in the modulation of gut barrier in broilers, further studies are needed.
Glucocorticoids are often used illegally in food-producing animals for the growth promotion of livestock animals. In accordance to official chemical methods for glucocorticoid detection, an animal is declared as non-compliant when a residue is identified in the sample. Neverthless, growth promoting molecules can often escape identification due to their rapid elimination or due to the use of non-detectable new generation drugs. Therefore, an indirect screening method able to detect the biological effect of long-term administration of low doses of dexamethasone and prednisolone on livestock has been developed to support official methods. As already described, FKBP5 (FKBP prolyl isomerase 5) expression in bovine thymus is regulated by glucocorticoids, and this specific regulation can be exploited in an indirect screening assay. In the present study, male veal calves and young bulls were considered in three different trials in which estradiol, dexamethasone, and prednisolone were administered alone or in combination with Revalor-200 subcutaneous pellets. Thoracic thymus was sampled from all animals and molecular analysis was performed. A duplex droplet digital PCR assay with EvaGreen® was employed to detect the target gene expression using absolute quantification. The developed droplet digital PCR assay was precise, showing intra- and inter-assay mean coefficient of variation values of about 6.16% and 3.17%, respectively. It was also highly specific (100%) with Youden’s index of 76.92% and 53.57% applied to veal calves and young bulls, respectively. The lowest detection limit in which the target gene expression level was kept constant, was 0.05 ng/μl of cDNA with 1 copies/μL and 0.5 copies/μL for target and reference gene, respectively. This study establishes the basis for using a digital PCR-based assay as an efficient test to identify animals illegally treated with glucocorticoids.
IntroductionMastitis is one of most impacting health issues in bovine dairy farming that reduces milk yield and quality, leading to important economic losses. Subclinical forms of the disease are routinely monitored through the measurement of somatic cell count (SCC) and microbiological tests. However, their identification can be tricky, reducing the possibilities of early treatments. In this study, a MALDI-TOF mass spectrometry approach was applied to milk samples collected from cows classified according to the SCC, to identify differences in polypeptide/protein profiles.Materials and methodsTwenty-nine raw milk samples with SCC >200,000 cell/ml (group H) and 91 samples with SCC lower than 200,000 (group L) were randomly collected from 12 dairy farms. Spectral profiles from skim milk were acquired in the positive linear mode within the 4,000–20,000 m/z mass acquisition range.Results and discussionBased on signal intensity, a total of 24 peaks emerged as significant different between the two groups. The most discriminant signals (4,218.2 and 4,342.98 m/z) presented a ROC curve with AUC values higher than 0.8. Classification algorithms (i.e., quick classifier, genetic algorithm, and supervised neural network) were applied for generating models able to classify new spectra (i.e., samples) into the two classes. Our results support the MALDI-TOF mass spectrometry profiling as a tool to detect mastitic milk samples and to potentially discover biomarkers of the disease. Thanks to its rapidity and low-cost, such method could be associated with the SCC measurement for the early diagnosis of subclinical mastitis.
The aim of this study was to assess the dynamics of microbial communities and antimicrobial resistance genes (ARGs) in the chicken gut following amoxicillin and thiamphenicol treatments and potential co-selection of ARGs. To this purpose, the microbial community composition, using 16S rRNA NGS, and the abundance of ARGs conferring resistance to β-lactams and phenicols, using qPCRs, were determined. Results revealed that the administered antimicrobials did not significantly reduce the gut microbiota diversity, but changed its composition, with taxa (e.g. Gallibacterium and Megamonas) being enriched after treatment and replacing other bacteria (e.g. Streptococcus and Bifidobacterium). Positive correlations were found between ARGs (e.g. cmlA, blaCMY-2, and blaSHV) and the relative abundance of specific taxa (e.g. Lactobacillus and Subdoligranulum). The selective pressure exerted by both amoxicillin and thiamphenicol resulted in an increased abundance of ARGs conferring resistance to β-lactams (e.g. blaTEM-1, blaSHV, and blaCTX-M1-like) and phenicols (e.g. floR and cmlA). These findings, together with the co-occurrence of genes conferring resistance to the two antimicrobial classes (e.g. blaTEM-1 and cmlA), suggest a possible interaction among antimicrobials on resistance emergence, possibly due to the presence of mobile genetic elements (MGEs) carrying multiple resistance determinants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.