The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5′-to-3′ resection of Double-Strand DNA Breaks (DSBs). Extended 3′ single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.
(18)F-FACBC can be considered an alternative tracer superior to (11)C-choline in the setting of patients with biochemical relapse after radical prostatectomy.
Microbes hijack prostate cancer therapy
Androgens such as testosterone and dihydrotestosterone are essential for male reproduction and sexual function. Androgens can also influence the growth of prostate tumor cells, and androgen deprivation therapy (ADT) either by surgical means (castration) or pharmacological approaches (hormone suppression), is the cornerstone of current prostate cancer treatments. Pernigoni
et al
. found that when the body was deprived of androgens during ADT, the gut microbiome could produce androgens from androgen precursors (see the Perspective by McCulloch and Trinchieri). Gut commensal microbiota in ADT-treated patients or castrated mice produced androgens that were absorbed into the systemic circulation. These microbe-derived androgens appeared to favor the growth of prostate cancer and helped to facilitate development into a castration- or endocrine therapy–resistant state. —PNK
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.