Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from area V6A of the monkey medial posterior parietal cortex. Two monkeys were trained to perform an instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study. Furthermore, we detected slightly different decoding accuracies, depending on the task's visual condition. Generalization analysis was performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions. Recordings of neural activity from nonhuman primate frontal and parietal cortex have led to the development of methods of decoding movement information to restore coordinated arm actions in paralyzed human beings. Our results show that the signals measured from the monkey medial posterior parietal cortex are valid for correctly decoding information relevant for grasping. Together with previous studies on decoding reach trajectories from the medial posterior parietal cortex, this highlights the medial parietal cortex as a target site for transforming neural activity into control signals to command prostheses to allow human patients to dexterously perform grasping actions.
Summary The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement.
The posterior parietal cortex is well known to mediate sensorimotor transformations during the generation of movement plans, but its ability to control prosthetic limbs in 3D environments has not yet been fully demonstrated. With this aim, we trained monkeys to perform reaches to targets located at various depths and directions and tested whether the reach goal position can be extracted from parietal signals. The reach goal location was reliably decoded with accuracy close to optimal (>90%), and this occurred also well before movement onset. These results, together with recent work showing a reliable decoding of hand grip in the same area, suggest that this is a suitable site to decode the entire prehension action, to be considered in the development of brain-computer interfaces.
In the treatment of knee periprosthetic joint infection with a two-stage protocol, static spacers allow for the local delivery of high doses of antibiotics and help to preserve soft tissue tension. Articulated spacers were introduced to better preserve flexion after the reimplantation. The aim of this systematic review is to provide a comprehensive data collection of the results of these different spacers. An in-depth search on the main clinical databases was performed concerning the studies reporting data on the topic. A total of 87 studies and 4250 spacers were included. No significant differences were found both in pooling data analysis and meta-analysis of comparative studies about infection recurrences, complications, and clinical scores. Mean active knee flexion at last follow-up after total knee reimplantation was found to be significantly higher using articulated spacers (91.6° ± 7° for static spacers vs. 100.3° ± 9.9° for articulated spacers; p < 0.001). Meta-analysis also recognized this strong significant difference (p < 0.001). This review has confirmed that articulated spacers do not appear to be inferior to static spacers regarding all clinical outcomes, while they are superior in terms of active flexion. However, the low quality of the studies and the risk for selection bias with complex patients preferentially treated with static spacers need to be accounted for.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.